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DISCLAIMER 

 

Developers and distributors assume no responsibility for the use of MIDAS Family Program (midas Civil, 

midas FEA, midas FX+, midas Gen, midas DShop, midas GTS NX, SoilWorks, midas NFX, midas 

MeshFree; hereinafter referred to as “MIDAS package”) or for the accuracy or validity of any results 

obtained from the MIDAS package. 

 

Developers and distributors shall not be liable for loss of profit, loss of business, or financial loss which 

may be caused directly or indirectly by the MIDAS package, when used for any purpose or use, due to 

any defect or deficiency therein. Accordingly, the user is encouraged to fully understand the bases of the 

program and become familiar with the users manuals. The user shall also independently verify the results 

produced by the program. 
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1. Numerical Analysis Model of  
midas Civil 

 

 

 

 

 

Numerical Analysis Model 

 
The analysis model of a structure includes nodes (joints), elements and boundary 

conditions. Finite elements are used in data entry, representing members of the 

structure for numerical analysis, and nodes define the locations of such 

members. Boundary conditions represent the status of connections between the 

structure and neighboring structures such as foundations. 

 

A structural analysis refers to mathematical simulations of a numerical analysis model 

of a structure. It allows the practicing structural engineers to investigate the behaviors 

of the structure likely subjected to anticipated eventual circumstances. 

 

For a successful structural analysis, it should be premised that the structural 

properties and surrounding environmental conditions for the structure are 

defined correctly. External conditions such as loading conditions may be 

determined by applicable building codes or obtained by statistical approaches. 

The structural properties, however, implicate a significant effect on the 

analysis results, as the results highly depend on modeling methods and the 

types of elements used to construct the numerical analysis model of the 

structure. Finite elements, accordingly, should be carefully selected so that they 

represent the real structure as closely as possible. This can be accomplished by 

comprehensive understanding of the elements’ stiffness properties that affect the 

behaviors of the real structure. However, it is not always easy and may be 

sometimes uneconomical to accurately reflect every stiffness property and 

material property of the structure in the numerical analysis model. Real 

structures generally comprise complex shapes and various material properties. 

 

For practical reasons, the engineer may simplify or adjust the numerical analysis 

model as long as it does not deviate from the purpose of analysis. For example, 

the engineer may use beam elements for the analysis of shear walls rather than 

using planar elements (plate elements or plane stress elements) based on his/her 

judgment. In practice, modeling a shear wall as a wide column, represented by a 

beam element in lieu of a planar element, will produce reliable analysis results, if 

the height of the shear wall exceeds its width by five times. Also, in civil 
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structures such as bridges, it is more effective to use line elements (truss 

elements, beam elements, etc.) rather than using planar elements (plate elements 

or plane stress elements) for modeling main girders, from the perspective of 

analysis time and practical design application. 

 

The analysis model of a building structure can be significantly simplified if rigid 

diaphragm actions can be assumed for the lateral force analysis. In such a case, 

floors can be excluded from the building model by implementing proper 

geometric constraints without having to model the floors with finite elements.  

 

Finite elements mathematically idealize the structural characteristics of members 

that constitute a structure. Nevertheless, the elements cannot perfectly represent the 

structural characteristics of all the members in all circumstances. As noted earlier, you 

are encouraged to choose elements carefully only after comprehensive understanding 

of the characteristics of elements. The boundaries and connectivities of the elements 

must reflect their behaviors related to nodal degrees of freedom. 

 

 

 

Coordinate Systems and Nodes 

 
midas Civil provides the following coordinate systems: 

 

Global Coordinate System (GCS) 
 

Element Coordinate System (ECS) 
 

Node local Coordinate System (NCS) 

 

The GCS (Global Coordinate System) uses capital lettered “X-Y-Z axes” in 

the conventional Cartesian coordinate system, following the right hand rule. 

The GCS is used for node data, the majority of data entries associated with nodes 

and all the results associated with nodes such as nodal displacements and 

reactions. 

 

The GCS defines the geometric location of the structure to be analyzed, and its 

reference point (origin) is automatically set at the location, X=0, Y=0 and Z=0, 

by the program. Since the vertical direction of the program screen represents the 

Z-axis in midas Civil, it is convenient to enter the vertical direction of the 

structure to be parallel with the Z-axis in the GCS. The Element Coordinate 

System (ECS) uses lower case “x-y-z axes” in the conventional Cartesian 

coordinate system, following the right hand rule. Analysis results such as element 

forces and stresses and the majority of data entries associated with elements are 

expressed in the local coordinate system.


 

See “Types of elements 

and important 

considerations” in 

Numerical analysis 

model in midas Civil. 
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The Node local Coordinate System (NCS) is used to define input data associated 

with nodal boundary conditions such as nodal constraints, nodal spring supports 

and specified nodal displacements, in an unusual coordinate system that does not 

coincide with the GCS. The NCS is also used for producing reactions in an 

arbitrary coordinate system. The NCS uses lower case “x-y-z axes” in the 

conventional Cartesian coordinate system, following the right hand rule. 

 

 

 

 
 

Figure 1.1 Global Coordinate System and Nodal Coordinates 

  a node (Xi, Yi, Zi) 

Reference point  
(origin) of the Global 
Coordinate System 
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Types of Elements and Important Considerations 

 
The midas Civil element library consists of the following elements: 

 

Truss Element 
 

Tension-only Element (Hook function included) 
 

Cable Element 
 

Compression-only Element (Gap function included) 
 

Beam Element/Tapered Beam Element 
 

Plane Stress Element 
 

Plate Element 
 

Two-dimensional Plane Strain Element 
 

Two-dimensional Axisymmetric Element 
 

Solid Element 

 

Defining the types of elements, element material properties and element stiffness 

data completes data entry for finite elements. Connecting node numbers are then 

specified to define the locations, shapes and sizes of elements. 

 

 

 

Truss Element 
 

 Introduction 
 

A truss element is a two-node, uniaxial tension-compression three-dimensional 

line element. The element is generally used to model space trusses or diagonal 

braces. The element undergoes axial deformation only. 

 

 

 Element d.o.f. and ECS 
 

All element forces and stresses are expressed with respect to the ECS. 

Especially, the ECS is consistently used to specify shear and flexural stiffness of 

beam elements. 
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Only the ECS x-axis is structurally significant for the elements retaining axial 

stiffness only, such as truss elements and tension-only/compression-only 

elements. The ECS y and z-axes, however, are required to orient truss members’ 

cross-sections displayed graphically. 

 

midas Civil uses the Beta Angle (β) conventions to identify the orientation of 

each cross-section.  The Beta Angle relates the ECS to the GCS. The ECS x-axis 

starts from node N1 and passes through node N2 for all line elements


(Figures 

1.2 and 1.3). The ECS z-axis is defined to be parallel with the direction of “I” 

dimension of cross-sections (Figure 1.44). That is, the y-axis is in the strong axis 

direction. The use of the right-hand rule prevails in the process. 

 

If the ECS x-axis for a line element is parallel with the GCS Z-axis, the Beta 

angle is defined as the angle formed from the GCS X-axis to the ECS z-axis. The 

ECS x-axis becomes the axis of rotation for determining the angle using the 

right-hand rule. If the ECS x-axis is not parallel with the GCS Z-axis, the Beta 

angle is defined as the right angle to the ECS x-z plane from the GCS Z-axis. 

Line Elements in Civil 

represent Truss, 

Tension-Only, 

Compression-Only, 

Beam, Tapered Beam 

elements, etc., and 

Plane elements 

represent Plane stress, 

Plane, Plane strain, 

Axisymmetric etc. 
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(a) Case of vertical members (ECS x-axis is parallel with the global Z-axis) 

 

 

 
(b) Case of horizontal or diagonal members  

(ECS x-axis is not parallel with the global Z-axis.) 

 
Figure 1.2 Beta Angle Conventions 

X’: axis passing through node N1 and parallel with the global X-axis 
Y’: axis passing through node N1 and parallel with the global Y-axis 

Z’: axis passing through node N1 and parallel with the global Z-axis 

 GCS 

 GCS  GCS 
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 Functions related to the elements 
 

Create Elements 

Material: Material properties 

Section: Cross-sectional properties 

Pretension Loads 
 

 

 Output for element forces 
 

The sign convention for truss element forces is shown in Figure 1.3. The arrows 

represent the positive (+) directions. 

 

 
Figure 1.3 ECS of a truss element and the sign convention for element forces 

(or element stresses) 

 

ECS z-axis 

Axial Force 

ECS x-axis 

ECS y-axis 

Axial Force 

* The arrows represent the positive (+) directions of element forces. 

N2 
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Figure 1.4 Sample Output for truss element forces & stresses 



 
 
 
 

Types of Elements and Important Considerations  

 

 

9 

Tension-only Element 
 

 Introduction 
 

Two nodes define a tension-only, three-dimensional line element. The element is 

generally used to model wind braces and hook elements. This element 

undergoes axial tension deformation only. 

 

The tension-only elements include the following types: 

 

Truss: A truss element transmits axial tension forces only. 

Hook: A hook element retains a specified initial hook distance. The element 

stiffness is engaged after the tension deformation exceeds that distance. 

 

 

 

 
Truss Type Hook Type 

 
Figure 1.5 Schematics of tension-only elements 

 

 

 

 Element d.o.f. and the ECS 
 

The element d.o.f. and the ECS of a tension-only element are identical to that of 

a truss element. 

 

 

 Functions related to the elements 
 

Main Control Data: Convergence conditions are identified for Iterative  

Analysis


 using tension-only elements. 

Material: Material properties 

Section: Cross-sectional properties 

Pretension Loads 
 

 

 Output for element forces 
 

Tension-only elements use the same sign convention as truss elements. 

A nonlinear structural 

analysis reflects the 

change in stiffness due 

to varying member 

forces. The iterative 

analysis means to carry 

out the analysis 

repeatedly until the 

analysis results satisfy 

the given convergence 

conditions. 

Refer to “Analysis> 

Main Control Data” of 

On-line Manual. 

if hook distance = 0  if hook distance > 0 
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Cable Element 
 

 Introduction  
 

Two nodes define a tension-only, three-dimensional line element, which is 

capable of transmitting axial tension force only. A cable element reflects the 

change in stiffness varying with internal tension forces. 

 

 

 
Figure 1.6 Schematics of a cable element 

 

 

 

A cable element is automatically transformed into an equivalent truss element 

and an elastic catenary cable element in the cases of a linear analysis and a 

geometric nonlinear analysis respectively. 

 

 

 Equivalent truss element 
 

The stiffness of an equivalent truss element is composed of the usual elastic 

stiffness and the stiffness resulting from the sag, which depends on the 

magnitude of the tension force. The following expressions calculate the stiffness: 

 

1

1/ 1/
comb

sag elastic

K
K K



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3
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where, E: modulus of elasticity A: cross-sectional area 

L: length   w: weight per unit length 

T: tension force 

pretension 
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 Elastic Catenary Cable Element 
 

The tangent stiffness of a cable element applied to a geometric nonlinear 

analysis is calculated as follows: 

 

Figure 1.7 illustrates a cable connected by two nodes where displacements 
1 , 

2 & 
3 occur at Node i and 

4 , 5 & 
6 occur at Node j, and as a result the 

nodal forces F0
1, F0

2, F0
3, F0

4, F0
5, F0

6  are transformed into F1, F2, F3, F4, F5, F6 

respectively. Then, the equilibriums of the nodal forces and displacements are 

expressed as follows: 

 

14 FF 
 

25 FF 
 

6 3 0 0F F L 
 (except, 0 

assumed) 

)F,F,F(fll 321410xx 
 

y y0 2 5 1 2 3
l l g(F ,F ,F )     

 

z z0 3 6 1 2 3
l l h(F ,F ,F )   

 
 

 

 

 
Figure 1.7 Schematics of tangent stiffness of an elastic catenary cable element 
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The differential equations for each directional length of the cable in the Global 

Coordinate System are noted below. When we rearrange the load-displacement 

relations we can then obtain the flexibility matrix, ([F]). The tangent stiffness, 

([K]), of the cable can be obtained by inverting the flexibility matrix. The 

stiffness of the cable cannot be obtained immediately, rather repeated analyses 

are carried out until it reaches an equilibrium state. 
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The components of the flexibility matrix are expressed in the following 

equations: 
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Compression-only Element 
 

 Introduction 
 

Two nodes define a compression-only, three-dimensional line element. The 

element is generally used to model contact conditions and support boundary 

conditions. The element undergoes axial compression deformation only. 

 

The compression-only elements include the following types: 

 

Truss : A truss element transmits axial compression forces only. 

Gap : A gap element retains a specified initial gap distance. The element 

stiffness is engaged after the compression deformation exceeds that 

distance. 

 

 

 Element d.o.f. and the ECS 
 

The element d.o.f. and the ECS of a compression-only element are identical to 

that of a truss element. 

 

 

 

 
(a) Truss Type 

 

 

 
(b) Gap Type 

 

 
Figure 1.8 Schematics of compression-only elements 

See “Analysis>  

Main Control Data”  

of On-line Manual. 

if gap distance = 0 

if gap distance > 0 
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 Functions related to the elements 
 

Main Control Data: Convergence conditions are identified for Iterative 

Analysis using compression-only elements. 

Material: Material properties 

Section: Cross-sectional properties 

Pretension Loads 

 

 

 Output for element forces 
 

Compression-only elements use the same sign convention as truss elements. 
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Beam Element 
 

 Introduction 
 

Two nodes define a Prismatic/Non-prismatic, three-dimensional beam element. 

Its formulation is founded on the Timoshenko Beam theory taking into 

account the stiffness effects of tension/compression, shear, bending and 

torsional deformations. In the Section Dialog Box, only one section is defined 

for a prismatic beam element whereas, two sections corresponding to each end 

are required for a non-prismatic beam element. 

 

midas Civil assumes linear variations for cross-sectional areas, effective shear 

areas and torsional stiffness along the length of a non-prismatic element. For 

moments of inertia about the major and minor axes, you may select a linear, 

parabolic or cubic variation.


 

 

 

 Element d.o.f. and the ECS 
 

Each node retains three translational and three rotational d.o.f. irrespective of the 

ECS or GCS. 

 

The ECS for the element is identical to that for a truss element. 

 

 

 Functions related to the elements 
 

Create Elements 
Material: Material properties 

Section: Cross-sectional properties 

Beam End Release: Boundary conditions at each end (end-release, fixed or 

hinged) 

Beam End Offsets: Rigid end offset distance 

Element Beam Loads: Beam loads (In-span concentrated loads or distributed 

loads) 

Line Beam Loads: Beam loads within a specified range 

Assign Floor Loads: Floor loads converted into beam loads 

Prestress Beam Loads: Prestress or posttension loads 

Temperature Gradient 
 

See “Model>Properties> 

Section” of On-line 

Manual. 
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 Output for element forces 
 

The sign convention for beam element forces is shown in Figure 1.9. The arrows 

represent the positive (+) directions. Element stresses follow the same sign 

convention. However, stresses due to bending moments are denoted by ‘+’ for 

tension and ‘-’ for compression. 

 

 

 
Figure 1.9 Sign convention for ECS and element forces (or stresses) of a beam element 

* The arrows represent the positive (+) directions of element forces. 

Sheary 

Shearz 

Sheary 

Shearz 

Axial Force  

Axial Force  

Torque 

ECS z-axis 

ECS y-axis 

Momenty 

Momentz 

Torque 

Momenty 

1/4pt. 

1/2p
t. 

3/4pt. 

ECS x-axis 

Momentz 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

18 

 

 

 
 

 

 

 
 

Figure 1.10 Sample output of beam element forces & stresses 
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Plane Stress Element 
 

 Introduction 
 

Three or four nodes placed in the same plane define a plane stress element. The 

element is generally used to model membranes that have a uniform thickness 

over the plane of each element. Loads can be applied only in the direction of its 

own plane. 

 

This element is formulated according to the Isoparametric Plane Stress 

Formulation with Incompatible Modes. Thus, it is premised that no stress 

components exist in the out-of-plane directions and that the strains in the 

out-of-plane directions can be obtained on the basis of the Poisson’s effects. 

 

 

 Element d.o.f. and the ECS 
 

The element retains displacement d.o.f. in the ECS x and y-directions only. 

 

The ECS uses x, y & z-axes in the Cartesian coordinate system, following the 

right hand rule. The directions of the ECS axes are defined as presented in 

Figure 1.11. 

 

In the case of a quadrilateral (4-node) element, the thumb direction signifies the 

ECS z-axis. The rotational direction (N1N2N3N4) following the right 

hand rule determines the thumb direction. The ECS z-axis originates from the 

center of the element surface and is perpendicular to the element surface. The 

line connecting the mid point of N1 and N4 to the mid point of N2 and N3 

defines the direction of ECS x-axis. The perpendicular direction to the x-axis in 

the element plane now becomes the ECS y-axis by the right-hand rule. 

 

For a triangular (3-node) element, the line parallel to the direction from N1 to 

N2, originating from the center of the element becomes the ECS x-axis. The y 

and z-axes are identically defined as those for the quadrilateral element. 
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ECS for a quadrilateral element 

 

 

 

 

 
ECS for a triangular element 

 

 
Figure 1.11 Arrangement of plane stress elements and their ECS 

Center of Element 

Node numbering order for creating 
the element (N1N2N3) 

ECS z-axis (normal to the element surface) 

ECS y-axis (perpendicular to  
ECS x-axis in the element plane) 

ECS x-axis 
(N1 to N2 direction) 

ECS z-axis (normal to the element surface) 

Node numbering order for creating 
the element (N1N2N3N4) 

ECS y-axis (perpendicular to  
ECS x-axis in the element plane) 

Center of Element 

ECS x-axis 
(N1 to N2 direction) 



 
 
 
 

Types of Elements and Important Considerations  

 

 

21 

 Functions related to the elements 
 

Create Elements 

Material: Material properties 

Thickness: Thickness of the element 

Pressure Loads: Pressure loads acting normal to the edges of the element 

 

Figure 1.12 illustrates pressure loads applied normal to the edges of a plane 

stress element. 

 

 

Figure 1.12 Pressure loads applied to a plane stress element 

 

 

 Output for element forces 
 

The sign convention for element forces and element stresses is defined 

relative to either the ECS or GCS. The following descriptions are based on the 

ECS: 

 

Output for element forces at connecting nodes  
 

Output for element stresses at connecting nodes and element centers  

 

At a connecting node, multiplying each nodal displacement component by the 

corresponding stiffness component of the element produces the element forces. 
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For stresses at the connecting nodes and element centers, the stresses calculated 

at the integration points (Gauss Points) are extrapolated. 

 

Output for element forces 

Figure 1.13 shows the sign convention for element forces. The arrows 

represent the positive (+) directions. 

 

Output for element stresses 

Figure 1.14 shows the sign convention for element stresses. The arrows 

represent the positive (+) directions. 

 

 
Nodal forces for a quadrilateral element 

 

 

 
Nodal forces for a triangular element 

 
Figure 1.13 Sign convention for nodal forces at each node of plane stress elements 

* Element forces are produced in the ECS and the arrows represent the positive (+) directions. 
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(a) Axial and shear stress 

components 

(b) Principal stress components 
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Figure 1.14 Sign convention for plane stress element stresses 

* Element stresses are produced in the ECS and the arrows represent the positive (+) 
directions. 
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Figure 1.15 Sample output of plane stress element forces & stresses 
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Two-Dimensional Plane Strain Element 
 

 Introduction 
 

2-D Plane Strain Element is a suitable element type to model lengthy structures 

of uniform cross-sections such as dams and tunnels. The element is formulated 

on the basis of Isoparametric Plane Strain Formulation with Incompatible 

Modes. 

 

The element cannot be combined with other types of elements. It is only 

applicable for linear static analyses due to the characteristics of the element. 

 

Elements are entered in the X-Z plane and their thickness is automatically 

given a unit thickness as shown in Figure 1.16. 

 

Because the formulation of the element is based on its plane strain 

properties, it is premised that strains in the out-of-plane directions do not 

exist. Stress components in the out-of-plane directions can be obtained only 

based on the Poisson’s Effects. 

 

 

 
Figure 1.16 Thickness of two-dimensional plane strain elements 

1.0 (Unit thickness) 

Plane strain  
elements 
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 Element d.o.f. and the ECS 
 

The ECS for plane strain elements is used when the program calculates the 

element stiffness matrices. Graphic displays for stress components are also 

depicted in the ECS in the post-processing mode. 

 

The element d.o.f. exists only in the GCS X and Z-directions. 

 

The ECS uses x, y & z-axes in the Cartesian coordinate system, following the 

right hand rule. The directions of the ECS axes are defined as presented in 

Figure 1.17. 

 

In the case of a quadrilateral (4-node) element, the thumb direction signifies the 

ECS z-axis. The rotational direction (N1N2N3N4) following the right 

hand rule determines the thumb direction. The ECS z-axis originates from the 

center of the element surface and is perpendicular to the element surface. The 

line connecting the mid point of N1 and N4 to the mid point of N2 and N3 

defines the direction of ECS x-axis. The perpendicular direction to the x-axis in 

the element plane now becomes the ECS y-axis by the right-hand rule. 

 

For a triangular (3-node) element, the line parallel to the direction from N1 to 

N2, originating from the center of the element becomes the ECS x-axis. The y 

and z-axes are identically defined as those for the quadrilateral element. 
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(a) Quadrilateral element 

 

 

(b) Triangular element 

 
Figure 1.17 Arrangement of plane strain elements, their ECS and nodal forces 

* Element forces are produced in the GCS and the arrows respresent the positive (+) directions. 
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 Functions related to the elements 
 

Create Elements 

Material: Material properties 

Pressure Loads: Pressure loads acting normal to the edges of the element 

 

Figure 1.18 illustrates pressure loads applied normal to the edges of a plane 

strain element. The pressure loads are automatically applied to the unit thickness 

defined in Figure 1.16. 

 

 

 

 

 

 
Figure 1.18 Pressure loads applied to a plane strain element 
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 Output for element forces 
 

The sign convention for plane strain element forces and stresses is defined 

relative to either the ECS or GCS. Figure 1.19 illustrates the sign convention 

relative to the ECS or principal stress directions of a unit segment. 

 

Output for element forces at connecting nodes 
 

Output for element stresses at connecting nodes and element centers 
 

At a connecting node, multiplying each nodal displacement component by the 

corresponding stiffness component of the element produces the element forces. 

 

For stresses at the connecting nodes and element centers, the stresses calculated 

at the integration points (Gauss Points) are extrapolated. 

 

Output for element forces 

Figure 1.17 shows the sign convention for element forces. The arrows 

represent the positive (+) directions. 

 

Output for element stresses 
Figure 1.19 shows the sign convention for element stresses. The arrows 

represent the positive (+) directions. 
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* Element stresses are produced in the ECS and the arrows represent the positive (+) directions. 

   
 

(a) Axial and shear stress 

components 

(b) Principal stress components 
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Figure 1.19 Sign convention for plane strain element stresses 
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Figure 1.20 Sample output of plane strain element forces & stresses 
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Two-Dimensional Axisymmetric Element 
 

 Introduction 
 

Two-Dimensional Axisymmetric Elements are suitable for modeling structures 

with a radial symmetry relative to geometries, material properties and loading 

conditions. Application examples may be pipes and cylindrical vessel bodies 

including heads. The elements are developed on the basis of the Isoparametric 

formulation theory. 

 

The element cannot be combined with other types of elements. It is only 

applicable for linear static analyses due to the characteristics of the element. 

 

2-D axisymmetric elements are derived from 3-D axisymmetric elements by 

taking the radial symmetry into account. The GCS Z-axis is the axis of rotation. 

The elements must be located in the global X-Z plane to the right of the 

global Z-axis. In this case, the radial direction coincides with the GCS X-axis. 

The elements are modeled such that all the nodes retain positive X-coordinates 

(X≥0). 

 

By default, the width of the element is automatically preset to a unit width 

(1.0 radian) as illustrated in Figure 1.21. 

 

Because the formulation of the element is based on the axisymmetric properties, 

it is premised that circumferential displacements, shear strains (XY, YZ) and 

shear stresses (XY, YZ) do not exist. 

 

Figure 1.21 Unit width of an axisymmetric element 

Z (axis of rotation) 

1.0 radian (unit width) 

an axisymmetric element 

(radial direction) 
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 Element d.o.f. and the ECS 
 

The ECS for axisymmetric elements is used when the program calculates the 

element stiffness matrices. Graphic displays for stress components are also 

depicted in the ECS in the post-processing mode. 

 

The element d.o.f. exists only in the GCS X and Z-directions. 

 

The ECS uses x, y & z-axes in the Cartesian coordinate system, following the 

right hand rule. The directions of the ECS axes are defined as presented in 

Figure 1.22. 

 

In the case of a quadrilateral (4-node) element, the thumb direction signifies the 

ECS z-axis. The rotational direction (N1N2N3N4) following the right 

hand rule determines the thumb direction. The ECS z-axis originates from the 

center of the element surface and is perpendicular to the element surface. The 

line connecting the mid point of N1 and N4 to the mid point of N2 and N3 

defines the direction of ECS x-axis. The perpendicular direction to the x-axis in 

the element plane now becomes the ECS y-axis by the right-hand rule. 

 

For a triangular (3-node) element, the line parallel to the direction from N1 to 

N2, originating from the center of the element becomes the ECS x-axis. The y 

and z-axes are identically defined as those for the quadrilateral element. 
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(a) Quadrilateral element 

 

 

(b) Triangular element 

 

 
Figure 1.22 Arrangement of axisymmetric elements, their ECS and nodal forces 

* Element stresses are produced in the GCS and the arrows represent the positive (+) directions. 
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 Functions related to the elements 
 

Create Elements 

Material: Material properties 

Pressure Loads: Pressure loads acting normal to the edges of the element 

 

Figure 1.23 illustrates pressure loads applied normal to the edges of an 

axisymmetric element. The pressure loads are automatically applied to the width 

of 1.0 Radian as defined in Figure 1.21. 

 

 

 
Figure 1.23 Pressure loads applied to an axisymmetric element 
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edge number 1 
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 Output for element forces 
 

The sign convention for axisymmetric element forces and stresses is defined 

relative to either the ECS or GCS. Figure 1.24 illustrates the sign convention 

relative to the ECS or principal stress directions of a unit segment. 

 

Output for element forces at connecting nodes 
 

Output for element stresses at connecting nodes and element centers 
 

At a connecting node, multiplying each nodal displacement component by the 

corresponding stiffness component of the element produces the element forces. 

 

For stresses at the connecting nodes and element centers, the stresses calculated 

at the integration points (Gauss Points) are extrapolated. 

 

Output for element forces 
Figure 1.22 shows the sign convention for element forces. The arrows 

represent the positive (+) directions. 

 

Output for element stresses 
Figure 1.24 shows the sign convention for element stresses. The arrows 

represent the positive (+) directions. 
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* Element stresses are produced in the ECS and the arrows represent the positive (+) directions. 
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Figure 1.24 Sign convention for axisymmetric element stresses 
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Figure 1.25 Sample output of axisymmetric element forces 

 

 

 

 
 

Figure 1.26 Sample output of axisymmetric element stresses 
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Plate Element 
 

 Introduction 
 

Three or four nodes placed in the same plane define a plate element. The element is 

capable of accounting for in-plane tension/compression, in-plane/out-of-plane 

shear and out-of-plane bending behaviors. 

 

The out-of-plane stiffness used in midas Civil includes two types, DKT/DKQ 

(Discrete Kirchhoff element) and DKMT/DKMQ (Discrete Kirchhoff-Mindlin 

element). DKT and DKQ are developed on the basis of a thin plate theory, 

Kirchhoff Plate theory. Whereas, DKMT and DKMQ are developed on the basis 

of a thick plate theory, Mindlin-Reissner Plate theory, which exhibits superb 

performance for thick plates as well as thin plates by assuming appropriate shear 

strain fields to resolve the shear-locking problem. The in-plane stiffness is 

formulated according to the Linear Strain Triangle theory for the triangular 

element, and Isoparametric Plane Stress Formulation with Incompatible Modes 

is used for the quadrilateral element. 

 

You may selectively enter separate thicknesses for the calculation of in-plane 

stiffness and out-of-plane stiffness. In general, the thickness specified for the in-

plane stiffness is used for calculating self-weight and mass. When it is not 

specified, the thickness for the out-of-plane stiffness will be used. 

 

 

 Element d.o.f. and the ECS 
 

The element’s translational d.o.f. exists in the ECS x, y and z-directions and 

rotational d.o.f. exists in the ECS x and y-axes. 

 

The ECS for plate elements is used when the program calculates the element 

stiffness matrices. Graphic displays for stress components are also depicted in 

the ECS in the post-processing mode. 

 

The ECS uses x, y & z-axes in the Cartesian coordinate system, following the 

right hand rule. The directions of the ECS axes are defined as presented in 

Figure 1.27. 

 

In the case of a quadrilateral (4-node) element, the thumb direction signifies the 

ECS z-axis. The rotational direction (N1N2N3N4) following the right 

hand rule determines the thumb direction. The ECS z-axis originates from the 

center of the element surface and is perpendicular to the element surface. The 

line connecting the mid point of N1 and N4 to the mid point of N2 and N3 

defines the direction of ECS x-axis. The perpendicular direction to the x-axis in 

the element plane now becomes the ECS y-axis by the right-hand rule. 
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For a triangular (3-node) element, the line parallel to the direction from N1 to 

N2, originating from the center of the element becomes the ECS x-axis. The y 

and z-axes are identically defined as those for the quadrilateral element. 

 

 

 
(a) ECS for a quadrilateral element 

 

 

 

 
(b) ECS for a triangular element 

 

 
Figure 1.27 Arrangement of plate elements and their ECS 
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 Functions related to the elements 
 

Create Elements 
Material: Material properties 

Thickness: Thickness of the element 

Pressure Loads: Pressure loads acting normal to the plane of the element 

Temperature Gradient 
 

 

 Output for element forces 
 

The sign convention for plate element forces and stresses is defined relative to 

either the ECS or GCS. The following descriptions are based on the ECS. 

 

Output for element forces at connecting nodes 
 

Output for element forces per unit length at connecting nodes and element 

centers 
 

Output for element stresses at top and bottom surfaces at connecting 

nodes and element centers 
 

At a connecting node, multiplying each nodal displacement component by the 

corresponding stiffness component of the element produces the element forces. 

 

In order to calculate element forces per unit length at a connecting node or an 

element center, the stresses are separately calculated for in-plane and out-of 

plane behaviors and integrated in the direction of the thickness. 

 

The element forces per unit length can be effectively applied to the design of 

concrete members. 

 

For stresses at the connecting nodes and element centers, the stresses calculated 

at the integration points (Gauss Points) are extrapolated. 

 

Output for element forces 
Figure 1.28 shows the sign convention for element forces. The arrows 

represent the positive (+) directions. 

 

Output for element forces per unit length 
Figure 1.29 shows the sign convention for element forces per unit length at 

connecting nodes and element centers. The arrows represent the positive (+) 

directions. 
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Output for element stresses 

Figure 1.30 (a) shows the top and bottom surface locations where element 

stresses are produced at connecting nodes and element centers. Figure 1.30 

(b) shows the sign convention for element stresses.  

 

 
* Element forces are produced in the ECS and the arrows represent the positive (+) directions. 

 

 
(a) Nodal forces for a quadrilateral element 

 

 

 

 

(b) Nodal forces for a triangular element 

 

 

Figure 1.28 Sign convention for nodal forces at each node of plate elements 
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* Element forces are produced in the ECS and the arrows represent the positive (+) directions. 

 

 
: Output locations of element forces per unit length 

 
(a) Output locations of element forces 

 

 

 

 
(b) Forces per unit length due to in-plane actions at the output locations 

 

 

 

 
(c) Moments per unit length due to out-of-plane bending actions at the output locations 

 

 
Figure 1.29 Output locations of plate element forces per unit length and the sign convention 
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* Element forces are produced in the ECS and the arrows represent thepositive (+) directions. 

 

 
(a) Output locations of element stresses 
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(b) Sign convention for plate element stresses 

 
Figure 1.30 Output locations of plate element stresses and the sign convention 

Center of Element 

: Output locations of the element stresses  
(at each connecting node and the center  
 at top/bottom surfaces) 
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Figure 1.31 Sample output of plate element forces 

 

 

 

 
 

Figure 1.32 Sample output of plate element stresses 
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Solid Element 
 

 Introduction 
 

4, 6 or 8 nodes in a three-dimensional space define a solid element. The element 

is generally used to model solid structures or thick shells. A solid element may 

be a tetrahedron, wedge or hexahedron. Each node retains three translational 

displacement d.o.f. 

 

The element is formulated according to the Isoparametric Formulation with 

Incompatible Modes. 
 

 

 Element d.o.f., ECS and Element types 
 

The ECS for solid elements is used when the program calculates the element 

stiffness matrices. Graphic displays for stress components are also depicted in 

the ECS in the post-processing mode. 
 

The element d.o.f. exists in the translational directions of the GCS X, Y and 

Z-axes. 
 

The ECS uses x, y & z-axes in the Cartesian coordinate system, following the 

right hand rule. The origin is located at the center of the element, and the 

directions of the ECS axes are identical to those of the plate element, plane 

number 1. 

 

There are three types of elements, i.e., 8-node, 6-node and 4-node elements, 

forming different shapes as presented in Figure 1.33. The nodes are sequentially 

numbered in an ascending order starting from N1 to the last number. 
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(a) 8-Node element (Hexahedron) 

 

 

 

 
6-Node element (Wedge) 4-Node element (Tetrahedron) 

 

 
Figure 1.33 Types of three-dimensional solid elements and node numbering sequence 

Plane no. 2 

Plane no. 5 

Plane no. 1 

Plane no. 3 

Plane no. 6 

Plane no. 4 

Plane no. 4 

 Plane no. 3 

 Plane no. 2 

Plane no. 1 

Plane no. 2 
(triangular plane defined 
by nodes N4, N5 and N6) 

Plane no. 5 

Plane no. 3 

 Plane no. 4 

Plane no. 1 
(triangular planedefined  
by nodes N1, N2 and N3) 
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 Functions related to the elements 
 

Create Elements 
Material: Material properties 
Pressure Loads: Pressure loads acting normal to the faces of the element 

 

Loads are entered as pressure loads applied normal to each surface as illustrated 

in Figure 1.34. 

 

 
* The arrows represent the positive (+) directons. 

 

 

 

 
Figure 1.34 Pressure loads acting on the surfaces of a solid element 

Pressure loads acting on the plane no. 2 

Pressure 
loads acting 
on the plane 
no. 4 

Pressure loads acting 
on the plane no. 5 

Pressure loads  
acting on the plane no. 3 

Pressure loads acting 
on the plane no. 6 

Pressure loads acting on the plane no. 1 
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 Output for element forces 
 

The sign convention for solid element forces and stresses is defined relative 

to either the ECS or GCS. 

 

Output for element forces at connecting nodes 
 

Output for three-dimensional element stress components at connecting 

nodes and element centers 
 

At a connecting node, multiplying each nodal displacement component by the 

corresponding stiffness component of the element produces the element forces. 

 

For stresses at the connecting nodes and element centers, the stresses calculated 

at the integration points (Gauss Points) are extrapolated. 

 

Output for element forces 
Figure 1.35 shows the sign convention for element forces. The arrows 

represent the positive (+) directions. 

 

Output for element stresses 
Figure 1.36 shows the sign convention for element stresses. The arrows 

represent the positive (+) directions. 
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* Element forces are produced in the GCS and the arrows represent the positive (+) directions. 

 

 

 

 
Figure 1.35 Sign convention for solid element forces at connecting nodes 

GCS 
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Figure 1.36 Sign convention for solid element stresses at connecting nodes 
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Figure 1.37 Sample output of solid element forces 

 

 
 

Figure 1.38 Sample output of solid element stresses
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Important Aspects of Element Selection 

 
The success of a structural analysis very much depends on how closely the 

selected elements and modeling represent the real structure. 

 

Analysis objectives determine the selection of elements and the extent of 

modeling. For example, if the analysis is carried out for the purpose of 

design, then the structure needs to be divided into appropriate nodes and 

elements in order to obtain displacements, member forces and stresses that 

are required for design. It would be more efficient to select elements so that the 

member forces and stresses can be used directly for design without subsequent 

transformation. A comparatively coarse mesh model may be sufficient to obtain 

displacements or to perform eigenvalue analysis. In contrast, the model with fine 

mesh is more appropriate for computing element forces. 

 

In the case of an eigenvalue analysis where the prime purpose is to observe the 

overall behavior of the structure, a simple model is preferable so as to avoid the 

occurrence of local modes. At times, idealizing the structure with beam elements 

having equivalent stiffness works better than a detailed model, especially in the 

preliminary design phase. 

 

Important considerations for creating an analysis model are outlined below. 

Some of the factors to be considered for locating nodes in a structural model 

include the geometric shape of the structure, materials, section shapes and 

loading conditions. Nodes should be placed at the following locations: 

 

Points where analysis results are required 

Points where loads are applied 

Points or boundaries where stiffness (section or thickness) changes 

Points or boundaries where material properties change 

Points or boundaries where stress concentrations are anticipated  

such as in the vicinity of an opening 

At the structural boundaries 

Points or boundaries where structural configurations change 

 

When line elements (truss elements, beam elements, etc.) are used, analysis 

results are not affected by the sizes of elements. Whereas, analyses using planar 

elements (plane stress elements, plane strain elements, axisymmetric elements 

and plate elements) or solid elements are heavily influenced by the sizes, shapes 

and arrangements of elements. Planar or solid elements should be sufficiently 

refined at the regions where stresses are expected to vary significantly or where 

detailed results are required. It is recommended that the elements be divided 

following the anticipated stress contour lines or stress distribution. 
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Fine mesh generations are generally required at the following locations: 

 

Regions of geometric discontinuity or in the vicinity of an opening 

Regions where applied loadings vary significantly; e.g. points adjacent to 

relatively large magnitude concentrated loads are applied 

Regions where stiffness or material properties change 

Regions of irregular boundaries 

Regions where stress concentration is anticipated 

Regions where detailed results of element forces or stresses are  

required 

 

The factors to be considered for determining the sizes and shapes of elements are 

as follows: 

 

The shapes and sizes of elements should be as uniform as possible. 

Logarithmic configurations should be used where element size  

changes are necessary. 

Size variations between adjacent elements should be kept to less  

than 1/2. 

4-Node planar elements or 8-node solid elements are used for stress   

calculations. An aspect ratio close to a unity (1:1) yields an optimum 

solution, and at least a 1:4 ratio should be maintained. For the purpose 

of transferring stiffness or calculating displacements, aspect ratios less 

than 1:10 are recommended. 

Corner angles near 90° for quadrilateral elements and near 60° for 

triangular elements render ideal conditions. 

Even where unavoidable circumstances arise, corner angles need to be 

kept away from the range of 45° and 135° for quadrilateral elements, 

and 30° and 150° for triangular elements. 

In the case of a quadrilateral element, the fourth node should be on the 

same plane formed by three nodes. That is, three points always form a 

plane and the remaining fourth point can be out of the plane resulting 

in a warped plane. It is recommended that the magnitude of warping 

(out-of–plane) be kept less than 1/100 of the longer side dimension. 
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Truss, Tension-only and Compression-only Elements 
 

These elements are generally used for modeling members that exert axial forces 

only such as space trusses, cables and diagonal members as well as for modeling 

contact surfaces. 

 

For example, truss elements resisting axial tension and compression forces can 

be used to model a truss structure. Tension-only elements are suitable for 

modeling cables whose sagging effects can be neglected and for modeling 

diagonal members that are incapable of transmitting compression forces due to 

their large slenderness ratios, such as wind bracings. Compression-only elements 

can be used to model contact surfaces between adjacent structural members and 

to model ground support conditions taking into account the fact that tension 

forces cannot be resisted. Pretension loads can be used when members are 

prestressed. 

 

Because these elements do not retain rotational degrees of freedom at nodes, 

Singular Errors can occur during the analysis at nodes where they are connected to 

the same type of elements or to elements without rotational d.o.f. midas Civil 

prevents such singular errors by restraining the rotational d.o.f. at the corresponding 

nodes. 

 

If they are connected to beam elements that have rotational degrees of freedom, 

this restraining process is not necessary. 

 

As shown in Figure 1.39, you should exercise caution not to induce unstable 

structures when only truss elements are connected. The structure shown in Figure 1.39 

(a) lacks rotational stiffness while being subjected to an external load in its plane, 

resulting in an unstable condition. Figures 1.39 (b) and (c) illustrate unstable structures 

in the loading direction (X-Z plane), even though the structures are stable in the Y-

Z plane direction. 

 

You should use tension-only and compression-only elements with care. Element 

stiffness may be ignored in the analysis depending on the magnitudes of loads; 

e.g., when compression loads are applied to tension-only elements. 
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(a) When a force is applied in the X-direction on the X-Z plane 

 

 
(b) When a force is applied in the X-direction perpendicular to the Y-Z plane 

 

 
(c) When a force is applied in the X-direction perpendicular to the Y-Z plane 

 
Figure 1.39 Typical examples of unstable structures that are composed of truss 

(tension-only & compression-only) elements 

force 

force 

force 
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Beam Element 
 

This element is typically used for modeling prismatic and non-prismatic tapered 

structural members that are relatively long compared to section dimensions. The 

element can be also used as load-transfer elements connecting other elements 

having differing numbers of d.o.f. 

 

In-span concentrated loads, distributed loads, temperature gradient loads and 

prestress loads can be applied to beam elements. 

 

A beam element has 6 d.o.f. per node reflecting axial, shear, bending and 

torsional stiffness. When shear areas are omitted, the corresponding shear 

deformations of the beam element are ignored. 

 

The beam element is formulated on the basis of the Timoshenko beam theory (a 

plane section initially normal to the neutral axis of the beam remains plane but 

not necessarily normal to the neutral axis in the deformed state) reflecting shear 

deformations. If the ratio of the section depth to length is greater than 1/5, a fine 

mesh modeling is desirable because the effect of shear deformations becomes 

significant. 

 

The torsional resistance of a beam element differs from the sectional polar 

moment of inertia (they are the same for circular and cylindrical sections). You 

are cautioned when the effect of torsional deformation is large, as the torsional 

resistance is generally determined by experimental methods.


  

 

Beam and truss elements are idealized line elements, thus their cross-sections are 

assumed to be dimensionless. The cross-sectional properties of an element are 

concentrated at the neutral axis that connects the end nodes. As a result, the 

effects of panel zones between members (regions where columns and beams 

merge) and the effects of non-alignment of neutral axes are not considered. In 

order for those nodal effects to be considered, the beam end offset option or 

geometric constraints must be used.


 

 

The tapered section may be used when the section of a member is non-prismatic. 

It may be desirable to use a number of beam elements to model a curved beam.


  

 

When members are connected by pins or slotted holes (Figure 1.40 (a) and (b)), 

the Beam End Release option is used.


  

 

Note that a singularity error can result in a case where a particular degree of 

freedom is released for all the elements joining at a node, resulting in zero 

stiffness associated with that degree of freedom. If it is inevitable, a spring 

element (or an elastic boundary element) having a minor stiffness must be added 

to the corresponding d.o.f. 

Refer to Numerical 

Analysis Model of 

CIVIL>Stiffness Data of 

Elements. 

Refer to Numerical 

Analysis Model of 

CIVIL>Boundaries> 

Beam End Offset. 

Refer to “Model> 

Properties>Section”  

of On-line Manual. 

Refer to  

“Model> Boundaries> 

Beam End Release”  

of On-line Manual. 
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(a) Pin connection Slot-hole connection 

 

 

 

 
When multiple beam elements are pin connected at a node 

 

 

 

 
(b) When elements having different d.o.f. are connected 

 

 
Figure 1.40 Examples of end-release application 

When several beam 

elements are pin 

connected at a node, 

the degree of freedom 

for at least one element 

must be maintained 

while the ends of all 

other elements are 

released in order to 

avoid singularity. 

beam 

Rigid connection 

Beam element 

Rigid beam element 
for connectivity 

All rotational degrees of 
freedom and vertical 
displacement degree of 
freedom released 

Plane stress or plate elements 

Column 

Slot hole 

Girder 

Axial direction  
d.o.f. released 

Rotational d.o.f. released 

Girder 

Beam 

Rotational d.o.f. released 

Rigid connection 
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The rigid beam element can be effectively used when elements having different 

degrees of freedom are connected. The rigid effect is achieved by assigning a 

large stiffness value relative to the contiguous beam elements. In general, a 

magnitude of 105 ~ 108 times the stiffness of the neighboring elements provides 

an adequate result, avoiding numerical ill conditions. 

 

Figure 1.40 (d) illustrates the case where a beam member is joined to a wall. The 

wall element may be a plane stress or plate element. The nodal in-plane moment 

corresponding to the beam element’s rotational degree of freedom will not be 

transmitted to the planar element (plane stress or plate element) because the 

planar element has no rotational stiffness about the normal direction to the plane. 

The interface will behave as if the beam was pin connected. In such a case, a 

rigid beam element is often introduced in order to maintain compatible 

connectivity. All degrees of freedom of the rigid beam at the beam element are 

fully maintained while the rotational and axial displacement degrees of freedom 

are released at the opposite end. 
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Plane Stress Element 
 

This element can be used for modeling membrane structures that are subjected to 

tension or compression forces in the plane direction only. Pressure loads can be 

applied normal to the perimeter edges of the plane stress element. 

 

The plane stress element may retain a quadrilateral or triangular shape. The 

element has in-plane tension, compression and shear stiffness only. 

 

Quadrilateral (4-node) elements, by nature, generally lead to accurate results for 

the computation of both displacements and stresses. On the contrary, triangular 

elements produce poor results in stresses, although they produce relatively 

accurate displacements. Accordingly, you are encouraged to avoid triangular 

elements at the regions where detailed analysis results are required, and they are 

recommended for the transition of elements only (Figure 1.41). 

 

Singularity errors occur during the analysis process, where a plane stress element 

is joined to elements with no rotational degrees of freedom since the plane stress 

element does not have rotational stiffness. In midas Civil, restraining the 

rotational degrees of freedom at the corresponding nodes prevents the singularity 

errors. 

 

When a plane stress element is connected to elements having rotational stiffness 

such as beam and plate elements, the connectivity between elements needs to be 

preserved using the rigid link (master node and slave node) option or the rigid 

beam element option. 

 

Appropriate aspect ratios for elements may depend on the type of elements, the 

geometric configuration of elements and the shape of the structure. However, 

aspect ratios close to unity (1:1) and 4 corner angles close to 90° are 

recommended. If the use of regular element sizes cannot be achieved throughout 

the structure, the elements should be square shaped at least at the regions where 

stress intensities are expected to vary substantially and where detailed results are 

required. 

 

Relatively small elements result in better convergence. 
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Figure 1.41 Crack modeling using quadrilateral/triangular elements 

Triangular elements are  
used for connecting the 
quadrilateral elements. 
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Plane Strain Element 
 

This element can be used to model a long structure, having a uniform cross 

section along its entire length, such as dams and tunnels. The element cannot be 

used in conjunction with any other types of elements. 

 

Pressure loads can be applied normal to the perimeter edges of the plane strain 

element. 

 

Because this element is formulated on the basis of its plane strain properties, it is 

applicable to linear static analyses only. Given that no strain is assumed to exist 

in the thickness direction, the stress component in the thickness direction can be 

obtained through the Poisson’s effect. 

 

The plane strain element may retain a quadrilateral or triangular shape. The 

element has in-plane tension, compression and shear stiffness, and it has tension 

and compression stiffness in the thickness direction. 

 

Similar to the plane stress element, quadrilateral elements are recommended over 

the triangular elements, and aspect ratios close to unity are recommended for 

modeling plane strain elements.


 

 

 

 

Axisymmetric Element 
 

This element can be used for modeling a structure with axis symmetry relative to 

the geometry, material properties and loading conditions, such as pipes, vessels, 

tanks and bins. The element cannot be used in conjunction with any other types 

of elements. 

 

Pressure loads can be applied normal to the circumferential edges of the 

axisymmetric element. 

 

Because this element is formulated on the basis of its axisymmetric properties, it 

is applicable to linear static analyses only. It is assumed that circumferential 

displacements, shear strains and shear stresses do not exist. 

 

Similar to the plane stress element, quadrilateral elements are recommended over 

the triangular elements, and aspect ratios close to unity are recommended for 

modeling axisymmetric elements.


 

 

Refer to  

“Plane Stress Element”. 

Refer to  

“Plane Stress Element”. 
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Plate Element 
 

This element can be used to model the structures in which both in-plane and out-

of-plane bending deformations are permitted to take place, such as pressure vessels, 

retaining walls, bridge decks, building floors and mat foundations. 
 
Pressure loads can be applied to the surfaces of the elements in either the GCS or ECS. 
 
A plate element can be either quadrilateral or triangular in shape where its stiffness 

is formulated in two directions, in-plane direction axial and shear stiffness and out-

of-plane bending and shear stiffness.  
 
The out-of-plane stiffness used in midas Civil includes two types of elements, 

DKT/DKQ (Discrete Kirchhoff elements) and DKMT/DKMQ (Discrete Kirchhoff-

Mindlin elements). DKT/DKQ were developed on the basis of the Kirchhoff Thin 

Plate theory. Whereas, DKMT/DKMQ were developed on the basis of the Mindlin-

Reissner Thick Plate theory, which results in superb performances on thick plates as 

well as thin plates by incorporating appropriate shear strain fields to resolve the 

shear-locking problem. The in-plane stiffness of the triangular element is formulated 

in accordance with the Linear Strain Triangle (LST) theory, whereas the 

Isoparametric Plane Stress Formulation with Incompatible Modes is used for the 

quadrilateral element. 
 
The user may separately enter different thicknesses for an element for calculating 

the in-plane stiffness and the out-of-plane stiffness. In general, the self-weight and 

mass of an element are calculated from the thickness specified for the in-plane 

stiffness. However, if only the thickness for the out-of-plane stiffness is specified, 

they are calculated on the basis of the thickness specified for the out-of-plane 

stiffness. 
 
Similar to the plane stress element, the quadrilateral element type is recommended 

for modeling structures with plate elements. When modeling a curved plate, the 

angles between two adjacent elements should remain at less than 10°. Moreover, 

the angles should not exceed 2~3° in the regions where precise results are required. 
 
It is thus recommended that elements close to squares be used in the regions where 

stress intensities are expected to vary substantially and where detailed results are 

required. 

Figure 1.42 Example of plate elements used for a circular or cylindrical modeling 

plate element node 

Angle between two  
adjacent elements 
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Solid Element 
 

This element is used for modeling three-dimensional structures, and its types 

include tetrahedron, wedge and hexahedron.  

 

Pressure loads can be applied normal to the surfaces of the elements or in the X, 

Y, and Z-axes of the GCS. 

 

The use of hexahedral (8-node) elements produces accurate results in both 

displacements and stresses. On the other hand, using the wedge (6-node) and 

tetrahedron (4-node) elements may produce relatively reliable results for 

displacements, but poor results are derived from stress calculations. It is thus 

recommended that the use of the 6-node and 4-node elements be avoided if 

precise analysis results are required. The wedge and tetrahedron elements, 

however, are useful to join hexahedral elements where element sizes change. 

 

Solid elements do not have stiffness to rotational d.o.f. at adjoining nodes. 

Joining elements with no rotational stiffness will result in singular errors at their 

nodes. In such a case, midas Civil automatically restrains the rotational d.o.f. to 

prevent singular errors at the corresponding nodes. 

 

When solid elements are connected to other elements retaining rotational 

stiffness, such as beam and plate elements, introducing rigid links (master node 

and slave node feature in midas Civil) or rigid beam elements can preserve the 

compatibility between two elements. 

 

An appropriate aspect ratio of an element may depend on several factors such as 

the element type, geometric configuration, structural shape, etc. In general, it is 

recommended that the aspect ratio be maintained close to 1.0. In the case of a 

hexahedral element, the corner angles should remain at close to 90°. It is 

particularly important to satisfy the configuration conditions where accurate 

analysis results are required or significant stress changes are anticipated. It is 

also noted that smaller elements converge much faster. 



 
 
 
 

Element Stiffness Data  

 

 

65 

Element Stiffness Data 

 
Material property and section (or thickness) data are necessary to compute the 

stiffnesses of elements. Material property data are entered through 

Model>Properties>Material, and section data are entered through Model> 

Properties>Section or Thickness. 

 

Table 1.1 shows the relevant commands for calculating the stiffnesses of various 

elements. 
 

Element 
Material  

property data 
Section or  

thickness data 
Remarks 

Truss element Material Section Note 1 

Tension-only  
element 

Material Section Note 1 

Compression-only 
element 

Material Section Note 1 

Beam element Material Section Note 2 

Plane stress  
element 

Material Thickness Note 3 

Plate element Material Thickness Note 3 

Plane strain  
element 

Material - Note 4 

Axisymmetric  
element 

Material - Note 4 

Solid element Material - Note 5 

 
Table 1.1 Commands for computing element stiffness data 
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Note 
1. For truss elements, only cross-sectional areas are required for analysis. 

However, the section shape data should be additionally entered for the 

purposes of design and graphic display of the members. 

 

2. When a beam element is used to model a Steel-Reinforced Concrete (SRC) 

composite member, the program automatically calculates the equivalent 

stiffness reflecting the composite action. 

 

3. Thickness should be specified for planar elements. 

 

4. No section/thickness data are required for plane strain and axisymmetric 

elements as the program automatically assigns the unit width (1.0) and unit 

angle (1.0 rad) respectively. 

 

5. The program determines the element size from the corner nodes, and as 

such no section/thickness data are required for solid elements. 

 

Definitions of section properties for line elements and their calculation methods 

are as follows: 

 

The user may directly calculate and enter the section properties for line elements 

such as truss elements, beam elements, etc. However, cautions shall be exercised 

as to their effects of the properties on the structural behavior. In some instances, 

the effects of corrosions and wears may be taken into account when computing 

section properties. 

 

midas Civil offers the following three options to specify section properties:  

 

1. midas Civil automatically computes the section properties when the user 

simply enters the main dimensions of the section. 

 

2. The user calculates and enters all the required section properties.  

 

3. The user specifies nominal section designations contained in the database of 

AISC, BS, Eurocode3, JIS, etc. 

 

In specifying section properties, you can assign individual ID numbers for 

prismatic, tapered, combined and composite sections. In the case of a 

construction section, two separate predefined sections are used in combination. 

Section properties for composite construction sections composed of steel and 

reinforced concrete vary with construction stages reflecting the concrete pour 

and maturity. 

 

The following outlines the methods of calculating section properties and the 

pertinent items to be considered in the process: 
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Area (Cross-Sectional Area) 
 

The cross-sectional area of a member is used to compute axial stiffness and 

stress when the member is subjected to a compression or tension force. Figure 

1.43 illustrates the calculation procedure. 

 

Cross-sectional areas could be reduced due to member openings and bolt or rivet 

holes for connections. midas Civil does not consider such reductions. Therefore, 

if necessary, the user is required to modify the values using the option 2 above 

and his/her judgment. 

 

 

 

 
Area = ∫dA = A1 + A2  + A3 

= (300 x 15) + (573 x 10) + (320 x 12) 

= 14070 

 
Figure 1.43 Example of cross-sectional area calculation 
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Effective Shear Areas (Asy, Asz) 
 

The effective shear areas of a member are used to formulate the shear stiffness in 

the y and z-axis directions of the cross-section. If the effective shear areas are 

omitted, the shear deformations in the corresponding directions are neglected. 

 

When midas Civil computes the section properties by the option 1 or 3, the 

corresponding shear stiffness components are automatically calculated. Figure 

1.44 outlines the calculation methods. 

 

Asy: Effective shear area in the ECS y-axis direction 

Asz: Effective shear area in the ECS z-axis direction 
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Section Shape Effective Shear Area Section Shape Effective Shear Area 

 

1. Angle 
 

 

 
5

6

5

6

sy f

sz w

A B t

A H t

 

 

 

 

 

2. Channel 

 
 

5
(2 )

6
sy f

sz w

A B t

A H t

  

 

 

 

3. I-Section 

 
 

5
(2 )

6
sy f

sz w

A B t

A H t

  

 

 

 

4. Tee 

 

5
( )

6
sy f

sz w

A B t

A H t

 

 

 

 

5. Thin Walled Tube 

 
 

2

2

sy f

sz w

A B t

A H t

  

  

 

 

6. Thin Walled Pipe 

 

sy w

sz w

A r t

A r t





  

  

 

 

7. Solid Round Bar 

 
 

 

2

2

0.9

0.9

sy

sz

A r

A r









 

 

8.Solid Rectangular Bar 

 
 

5

6

5

6

sy

sz

A BH

A BH





 

 
Figure 1.44 Effective shear areas by section shape 
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Torsional Resistance (Ixx) 
 

Torsional resistance refers to the stiffness resisting torsional moments. It is 

expressed as 

 

<Eq. 1> 

xx

T
I


  

 

where, 

Ixx : Torsional resistance 

T  : Torsional moment or torque 

θ   : Angle of twist 

 

The torsional stiffness expressed in <Eq. 1> must not be confused with the polar 

moment of inertia that determines the torsional shear stresses. However, they are 

identical to one another in the cases of circular or thick cylindrical sections.  

 

No general equation exists to satisfactorily calculate the torsional resistance 

applicable for all section types. The calculation methods widely vary for open 

and closed sections and thin and thick thickness sections. 

 

For calculating the torsional resistance of an open section, an approximate 

method is used; the section is divided into several rectangular sub-sections and 

then their resistances are summed into a total resistance, Ixx, calculated by the 

equation below.  

 

<Eq. 2> 

xx xx
I i  

4

3

4
for

16
3.36 1

3 12
xx

b b
i ab a b

a a
   

  
  

  
 

where, 

ixx : Torsional resistance of a (rectangular) sub-section 

2a : Length of the longer side of a sub-section 

2b : Length of the shorter side of a sub-section 
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Figure 1.45 illustrates the equation for calculating the torsional resistance of a 

thin walled, tube-shaped, closed section.  
 

<Eq. 3> 
2

4

/S S

A
Ixx

d t



 

 

where, 

A : Total area enclosed by the median line of the tube 

dS  : Infinitesimal length of thickness centerline at a given point 

tS : Thickness of tube at a given point 

 

 

 

 

 

Torsional resistance: 
24

/
xx

s s

A
I

d t



 

Shear stress at a given point: 
2

T

s

T

At
   

 

Thickness of tube at a given point: st  

 
Figure 1.45 Torsional resistance of a thin walled, tube-shaped, closed section 
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Section Shape Torsional Reistance Section Shape Torsional Reistance 

 
1. Solid Round Bar 

 

 

41

2
xxI r  

 
2. Solid Square Bar 

 

 
 

42.25xxI a  

 

3. Solid Rectangular Bar 

 

 

4
3

4

16
3.36

3 12
xx

b b
I ab I

a a

  
    

  
 

(where, a b ) 

 
Figure 1.46 Torsional resistance of solid sections 

 

 

Section Shape Torsional Reistance Section Shape Torsional Reistance 

 

1. Rectangular Tube (Box) 

 

 

22( )
xx

f w

b h
I

b h

t t



 

  
 

 

 

2. Circular Tube (Pipe) 

 

 

4 4
1

2 2 2

o i
xx

D D
I 

    
     

     

 

 
Figure 1.47 Torsional resistance of thin walled, closed sections 
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Section Shape Torsional Resistance 

1. Angle 

 
 

  

4

1 2

4
3

1 4

4
3

2 4

1
0.21 1

3 12

1
0.105 1

3 192

0.07 0.076

2 3 2 2 2

xxI I I D

b b
I ab

a a

d d
I cd

c c

d r

b b

D d b r r b r d





  

  
    

  

  
    

  

 
  

 

      
 

 

(where, b < 2(d + r)) 

 

2. Tee 

                   
                 

                  IF b<d :  t=b, t1=d 

                  IF b>d :  t=d, t1=b 

 

 

4

1 2

4
3

1 4

4
3

2 4

1

2
2

1
0.21 1

3 12

1
0.105 1

3 192

0.15 0.10

4

2

xxI I I D

b b
I ab

a a

d d
I cd

c c

t r

t b

d
b r rd

D
r b





  

  
    

  

  
    

  

 
  

 

  




 

(where, d < 2(b + r)) 
 

3. Channel 

                       

Sum of torsinal stiffnesses of 2 angles 

4. I-Section 

                 
                 

                   IF b<d :  t=b, t1=d 
IF b>d :  t=d, t1=b 

 

 

 

4

1 2

4
3

1 4

3

2

1

2
2

2 2

1
0.21 1

3 12

1

3

0.15 0.10

4

2

xxI I I D

b b
I ab

a a

I cd

t r

t b

d
b r rd

D
r b





  

  
    

  



 
  

 

  




 

(where, d < 2(b + r)) 

 

Figure 1.48 Torsional resistance of thick walled, open sections 

Tee1 

Tee2 

Angle 1 

Angle 2 
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Section Shape Torsional Resistance 

 

1. Angle 

 

 3 31

3
xx w fI h t b t     

 

2. Channel 

 

 3 31
2

3
xx w fI h t b t      

 

3. I-Section 

 

 3 31
2

3
xx w fI h t b t      

 

4. Tee 

 

 3 31

3
xx w fI h t b t     

 

5. I-Section 

 
 

 3 33

1 1 2 2

1

3
xx w f fI h t b t b t       

 
Figure 1.49 Torsional resistance of thin walled, open sections 
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In practice, combined sections often exist. A combined built-up section may 

include both closed and open sections. In such a case, the stiffness calculation is 

performed for each part, and their torsional stiffnesses are summed to establish 

the total stiffness for the built-up section.  

 

For example, a double I-section shown in Figure 1.50 consists of a closed section 

in the middle and two open sections, one on each side.  

 

-The torsional resistance of the closed section (hatched part)  

 

<Eq. 4> 
2

1 1

1 1

2( )
c

f w

b h
I

b h

t t



 

  
 

 

 

-The torsional resistance of the open sections (unhatched parts)  

 

<Eq. 5> 

3

1

1
2 (2 )

3
o w wI b b t t

 
    

 
 

 

-The total resistance of the built-up section 

 

<Eq. 6> 

xx c oI I I   

 

Figure 1.51 shows a built-up section made up of an I-shaped section reinforced 

with two web plates, forming two closed sections. In this case, the torsional 

resistance for the section is computed as follows: 

 

If the torsional resistance contributed by the flange tips is negligible relative to 

the total section, the torsional property may be calculated solely on the basis of 

the outer closed section (hatched section) as expressed in <Eq. 7>. 

 

<Eq. 7> 
2

1 1

1 1

2( )
xx

f s

b h
I

b h

t t



 

  
 
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If the torsional resistance of the open sections is too large to ignore, then it 

should be included in the total resistance. 

 

 

 
 

 
Figure 1.50 Torsional resistance of section consisted of closed and open sections 

 

 

 

 
 

Figure 1.51 Torsional resistance of section consisted of two closed sections 
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Area Moment of Inertia (Iyy, Izz) 
 

The area moment of inertia is used to compute the flexural stiffness resisting 

bending moments. It is calculated relative to the centroid of the section.  

 

-Area moment of inertia about the ECS y-axis 

 

<Eq. 8> 
2

yyI z dA   

 

-Area moment of inertia about the ECS z-axis 

 

<Eq. 9> 
2

zzI y dA   

 

 

 

 

iA : area 

iz : distance from the reference point to the centroid of the section element in the z′-axis direction 

iy : distance from the reference point to the centroid of the section element in the y′-axis direction 

yiQ : first moment of area relative to the reference point in the y′-axis direction 

ziQ : first moment of area relative to the reference point in the z′-axis direction 

neutral axis 

reference point  
for the centroid 
position calculation 

centroid 
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 Calculation of neutral axes ( ,Z Y ) 

 

Y

632
7.5238

84

420
5.0000

84

y

z

zdA Q
Z =    

Area Area

ydA Q
=    

Area Area

    

    

  

  




 

 

 
 Calculation of area moments of inertia (Iyy, Izz) 

 

 
 

,

, ,
i

3
2

y1 i i y2 yy y1 y2

3
2

z1 i z2 zz z1 z2

I I I I I

I I I I Iy

bh
=A? Z z )      = ,     = + 

12

hb
=A? Y )      =      = + 

12





 

 
Figure 1.52 Example of calculating area moments of inertia 
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Area Product Moment of Inertia (Iyz) 
 

The area product moment of inertia is used to compute stresses for non-

symmetrical sections, which is defined as follows: 

 

<Eq. 10> 

yzI y zdA   

 

Sections that have at least one axis of symmetry produce Iyz=0. Typical symmetrical 

sections include I, pipe, box, channel and tee shapes, which are symmetrical about at 

least one of their local axes, y and z. However, for non-symmetrical sections such as 

angle shaped sections, where Iyz0, the area product moment of inertia should be 

considered for obtaining stress components. 

 

The area product moment of inertia for an angle is calculated as shown in Figure 

1.53. 

 

 
 

 
 

yz i yi zj

f f

f w w f

I = A? e ?

    = (B? )? B/2 Y )? (H t /2)-Z }

         +{(H t )? }? t /2 Y )? (H t /2) Z }

 

   


 

 
Figure 1.53 Area product moment of inertia for an angle 

 

 

centroid 
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Figure 1.54 Bending stress distribution of a non-symmetrical section 

 

 

 

The neutral axis represents an axis along which bending stress is 0 (zero). As 

illustrated in the right-hand side of Figure 1.54, the n-axis represents the neutral 

axis, to which the m-axis is perpendicular. 

 

Since the bending stress is zero at the neutral axis, the direction of the neutral 

axis can be obtained from the relation defined as  

 

<Eq. 11> 

( ) ( ) 0
y zz z yz z yy y yz

M I M I z M I M I y           

tan
y zz z yz

z yy y yz

M I M Iy

z M I M I


  
 

  
 

 

The following represents a general equation applied to calculate the bending 

stress of a section: 

 

<Eq. 12> 

2 2

( / ) ( / )

( / ) ( / )

y z yz zz z y yz yy

b

yy yz zz zz yz yy

M M I I M M I I
f z y

I I I I I I

 
   

 
 

neutral surface 
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In the case of an I shaped section, Iyz=0, hence the equation can be simplified as: 

 

<Eq. 13> 

y z

b by bx

yy zz

M M
f z y f f

I I
       

 

where, 

Iyy : Area moment of inertia about the ECS y-axis 

Izz : Area moment of inertia about the ECS z-axis 

Iyz : Area product moment of inertia 

Y : Distance from the neutral axis to the location of bending stress calculation  

  in the ECS y-axis direction 

Z : Distance from the neutral axis to the location of bending stress calculation  

  in the ECS z-axis direction 

My : Bending moment about the ECS y-axis 

Mz : Bending moment about the ECS z-axis 

 

The general expressions for calculating shear stresses in the ECS y and z-axes 

are: 

 

<Eq. 14> 

2 2
( )

( )

y yy z yz y y

y yy z yz y

z yy zz yz yy zz yz z

V I Q I Q V
I Q I Q

b I I I I I I b


     
                 

 

 

<Eq. 15> 

2 2
( )

( )

zz y yz zz z
x zz y yz z

y yy zz yz yy zz yz y

I Q I QV V
I Q I Q

b I I I I I I b


     
         

          

 

 

where, 

Vy : Shear force in the ECS y-axis direction 

Vz : Shear force in the ECS z-axis direction 

Qy : First moment of area about the ECS y-axis 

Qz : First moment of area about the ECS z-axis 

by :Thickness of the section at which a shear stress is calculated,  

  in the direction normal to the ECS z-axis 

bz :Thickness of the section at which a shear stress is calculated,  

  in the direction normal to the ECS y-axis 
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First Moment of Area (Qy, Qz) 
 

The first moment of area is used to compute the shear stress at a particular point 

on a section. It is defined as follows: 

 

<Eq. 16> 

y
Q zdA   

 

<Eq. 17> 

z
Q ydA   

 

When a section is symmetrical about at least one of the y and z-axes, the shear 

stresses at a particular point are: 

 

<Eq. 18> 

y z

y

zz z

V Q

I b






 

 

<Eq. 19> 

z y

z

yy y

V Q

I b






 

 

where, 

Vy : Shear force acting in the ECS y-axis direction 

Vz : Shear force acting in the ECS z-axis direction 

Iyy : Area moment of inertia about the ECS y-axis 

Izz : Area moment of inertia about the ECS z-axis 

by : Thickness of the section at the point of shear stress calculation  

  in the ECS y-axis direction 

bz : Thickness of the section at the point of shear stress calculation  

  in the ECS z-axis direction  
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Shear Factor for Shear Stress (Qyb, Qzb) 
 

The shear factor is used to compute the shear stress at a particular point on a 

section, which is obtained by dividing the first moment of area by the thickness 

of the section. 

 

<Eq. 20> 

,
y z y yz z

y zb zb

zz z zz z zz z

V Q V VQ Q
Q Q

I b I b I b


  
    

  
 

 

<Eq. 21> 

,
z y y yz z

z yb yb

yy y yy y yy y

V Q Q QV V
Q Q

I b I b I b


 
       

 

 

 

 

z y z
z yb

yy y yy

V Q V
Q

I b I
    

( )y fQ zdA B t z     

y wb t  

{( ) }/yb f wQ B t z t    

 
Figure 1.55 Example of calculating a shear factor 

point of shear stress calculation 

tw 
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Stiffness of Composite Sections 
 

midas Civil calculates the stiffness for a full composite action of structural steel 

and reinforced concrete. Reinforcing bars are presumed to be included in the 

concrete section. The composite action is transformed into equivalent section 

properties. 

 

The program uses the elastic moduli of the steel (Es) and concrete (Ec) defined in 

the SSRC79 (Structural Stability Research Council, 1979, USA) for calculating 

the equivalent section properties. In addition, the Ec value is decreased by 20% 

in accordance with the Eurocode 4. 

 

Equivalent cross-sectional area 

1 1

0.8
0.8c con

eq st con st

s

E A
Area A A A

E REN
     

 

Equivalent effective shear area 

1 1

0.8
0.8c con

eq st con st

s

E As
As As As As

E REN
     

 

Equivalent area moment of inertia 

1 1

0.8
0.8c con

eq st con st

s

E I
I I I I

E REN
     

 

where, 

Ast1 : zArea of structural steel 

Acon : Area of concrete 

Asst1 : Effective shear area of structural steel 

Ascon : Effective shear area of concrete 

Ist1 : Area moment of inertia of structural steel 

Icon : Area moment of inertia of concrete 

REN : Modular ratio  

  (elasticity modular ratio of the structural steel to the concrete, Es/Ec) 
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Boundary Conditions 

 

Boundary Conditions 
 

Boundary conditions are distinguished by nodal boundary conditions and 

element boundary conditions. 

 

Nodal boundary conditions: 

Constraint for degree of freedom 

Elastic boundary element (Spring support) 

Elastic link element (Elastic Link) 

 

Element boundary conditions: 

Element end release 

Rigid end offset distance (Beam End Offset) 

Rigid link 
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Constraint for Degree of Freedom 
 

The constraint function may be used to constrain specific nodal displacements or 

connecting nodes among elements such as truss, plane stress and plate elements, 

where certain degrees of freedom are deficient.


 

 

Nodal constraints are applicable for 6 degrees of freedom with respect to the 

Global Coordinate System (GCS) or the Node local Coordinate System (NCS). 

 

Figure 1.56 illustrates a method of specifying constraints on the degrees of 

freedom of a planar frame model. Since this is a two dimensional model with 

permitted degrees of freedom in the GCS X-Z plane, the displacement d.o.f. in 

the GCS X-direction and the rotational d.o.f. about the GCS X and Z axes need 

to be restrained at all the nodes, using Model>Boundaries>Supports.  

 

For node N1, which is a fixed support, the Supports function is used to 

additionally restrain the displacement d.o.f. in the GCS X and Z-directions and 

the rotational d.o.f. about the GCS Y-axis.


 

 

 

 
Figure 1.56 Planar frame model with constraints 

 

 

 

For node N3, which is a roller support, the displacement d.o.f. in the GCS Z 

direction is additionally restrained. 

Refer to “Model> 

Boundaries>Supports” 

of On-line Manual. 

: pinned support condition 

GCS : fixed support condition 

: roller support condition 

NCS 

angle of 
inclination 

Use the function 

“Model>Structure Type”  

for convenience when 

analyzing two-dimensional 

problems. 
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For node N5, which is a roller support in a NCS, the NCS is defined first at an 

angle to the GCS X-axis. Then the corresponding displacement degrees of 

freedom are restrained in the NCS using Supports.


 

 

Nodal constraints are assigned to supports where displacements are truly 

negligible. When nodal constraints are assigned to a node, the corresponding 

reactions are produced at the node. Reactions at nodes are produced in the GCS, 

or they may be produced in the NCS if defined.  

 

Figure 1.57 shows examples of constraining deficient degrees of freedom of 

elements using Supports. 

 

In Figure 1.57 (a), the displacement d.o.f. in the X-axis direction and the 

rotational d.o.f. about all the axes at the connecting node are constrained because 

the truss elements have the axial d.o.f. only. 

 

Figure 1.57 (b) represents an I-beam where the top and bottom flanges are 

modeled as beam elements and the web is modeled with plane stress elements. 

The beam elements have 6 d.o.f. at each node, and as such where the plane stress 

elements are connected to the beam elements, no additional nodal constraints are 

required. Whereas, the out-of-plane displacement d.o.f. in the Y direction and 

the rotational d.o.f. in all directions are constrained at the nodes where the plane 

stress elements are connected to one another. Plane stress elements retain the in-

plane displacement degrees of freedom only. 

 

Refer to “Model> 

Boundaries>Node 

Local Axis” of On-line 

Manual. 
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(a) Connection of truss elements 

 

 

 

 

 
(b) Modeling of an I-shaped cantilever beam, top/bottom flanges modeled  

as beam elements, and web modeled as plane stress elements 

 
Figure 1.57 Examples of constraints on degrees of freedom 

supports (all degrees of 
freedom are constrained) 

bottom flange  
(beam element) 

in-plane vertical load 

web (plane 
stress element) 

top flange (beam element) ●     : nodes without constrains 

○     : DY, RX, RY  and RZ are constrained 
DX  : displacement in the GCS X direction 
DY  : displacement in the GCS Y direction 
DZ  : displacement in the GCS Z direction 
RX  : rotation about the GCS X-axis 
RY  : rotation about the GCS Y-axis 
RZ  : rotation about the GCS Z-axis 
 

connecting node 
(DX, RX, RY and RZ are constrained) 

supports (all degrees of 
freedom are constrained) 
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Elastic Boundary Elements (Spring Supports) 
 

Elastic boundary elements are used to define the stiffness of adjoining structures 

or foundations. They are also used to prevent singular errors from occurring at 

the connecting nodes of elements with limited degrees of freedom, such as truss, 

plane stress, plate element, etc.


 

 

Spring supports at a node can be expressed in six degrees of freedom, three 

translational and three rotational components with respect to the Global 

Coordinate System (GCS). The translational and rotational spring components 

are represented in terms of unit force per unit length and unit moment per unit 

radian respectively. 

 

 

 

 
Figure 1.58 Modeling of boundary condition using point spring supports 

Refer to “Model> 

Boundaries>Point 

Spring Supports”  

of On-line Manual. 

Nodal Point 
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Figure 1.59 Modeling of boundary conditions using surface spring supports 

 

 

 

Spring supports are readily applied to reflect the stiffness of columns, piles or 

soil conditions. When modeling sub-soils for foundation supports, the modulus 

of subgrade reaction is multiplied by the tributary areas of the corresponding 

nodes. In this case, it is cautioned that soils can resist compressions only. 

 

midas Civil provides Surface Spring Supports to readily model the boundary 

conditions of the subsurface interface. The Point Spring is selected in 

Model>Boundaries>Surface Spring Supports and the modulus of subgrade 

reaction is specified in each direction. The soil property is then applied to the 

effective areas of individual nodes to produce the nodal spring stiffness as a 

boundary condition. In order to reflect the true soil characteristics, which can 

sustain compression only, Elastic Link (compression-only) is selected and the 

modulus of subgrade reaction is entered for the boundary condition.


 

 

Table 1.2 summarizes moduli of subgrade reaction for soils that could be 

typically encountered in practice. It is recommended that both maximum and 

minimum values be used separately, and conservative values with discretion be 

adopted for design. 

 

The axial stiffness of spring supports for columns or piles can be calculated by 

EA/H, where E is the modulus of elasticity for columns or piles, A is Effective 

cross-sectional area, and H is Effective length. 

Refer to “Model> 

Boundaries>Surface 

Spring Supports”  

of On-line Manual. 

Effective area 

K = modulus of subgrade reaction x effecive area 
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Soil Type Modulus of subgrade reaction  (KN/m3) 

Soft clay 12000 ~ 24000 

Medium stiff clay 24000 ~ 48000 

Stiff clay 48000~ 112000 

Loose sand 4800 ~ 16000 

Medium dense sand 9600 ~ 80000 

Silty medium dense sand 24000 ~ 48000 

Clayey gravel 48000 ~ 96000 

Clayey medium dense sand 32000 ~ 80000 

Dense sand 64000 ~ 130000 

Very dense sand 80000~ 190000 

Silty gravel 80000~ 190000 

 

Table 1.2 Typical values of moduli of subgrade reaction for soils


 

 

 

Rotational spring components are used to represent the rotational stiffness of 

contiguous boundaries of the structure in question. If the contiguous boundaries 

are columns, the stiffness is calculated by EI/H, where  is a rotational 

stiffness coefficient, I is Effective moment of inertia, and H is Effective length. 

 

Generally, boundary springs at a node are entered in the direction of each d.o.f. 

For more accurate analyses, however, additional coupled stiffness associated 

with other degrees of freedom needs to be considered. That is, springs representing 

coupled stiffness may become necessary to reflect rotational displacements 

accompanied by translational displacements. For instance, it may be necessary to 

model pile foundation as boundary spring supports. More rigorous analysis could 

be performed by introducing coupled rotational stiffness in addition to the 

translational stiffness in each direction.


 

Reference "Foundation 

Analysis and Design" 

by Joseph E. Bowles 

4th Edition 

Refer to “Model> 

Boundaries>General 

Spring Supports”  

of On-line Manual. 
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Boundary springs specified at a node, in general, follows the GCS unless an 

NCS is specified, in which case they are defined relative to the NCS.  

 

Singular errors are likely to occur when stiffness components in certain degrees 

of freedom are deficient subsequent to formulating the stiffness. If the rotational 

stiffness components are required to avoid such singular errors, it is 

recommended that the values from 0.0001 to 0.01 be used. The range of the 

values may vary somewhat depending on the unit system used. To avoid such 

singular errors, midas Civil thus provides a function that automatically assigns 

stiffness values, which are insignificant to affect the analysis results.


 

 

 

Refer to “Analysis> 

Main Control Data” of 

On-line Manual. 
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Elastic Link Element 
 

An elastic link element connects two nodes to act as an element, and the user 

defines its stiffness. Truss or beam elements may represent elastic links. 

 

However, they are not suitable for providing the required stiffness with the 

magnitudes and directions that the user desires. An elastic link element is 

composed of three translational and three rotational stiffnesses expressed in the 

ECS. 

 

The translational and rotational stiffnesses of an elastic link element are 

expressed in terms of unit force per unit length and unit moment per unit radian 

respectively. Figure 1.60 presents the directions of the ECS axes. An elastic link 

element may become a tension-only or compression-only element, in which case 

the only directional stiffness can be specified is in the ECS x-axis. 

 

Examples for elastic link elements include elastic bearings of a bridge structure, 

which separate the bridge deck from the piers. Compression-only elastic link 

elements can be used to model the soil boundary conditions. The rigid link 

option connects two nodes with an “infinite” stiffness.


 

 

 

 

 

 
Figure 1.60 The ECS of an elastic link element connecting two nodes 

Refer to “Model> 

Boundaries>Elastic 

Link” of On-line Manual. 
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General Link Element 
 

                                    

kry

krz

joint  i

krx

kdx

kdy

kdz

x

z

y

local coordinate axis

cyiL cyjL

L

cziL czjL

joint  j

 
                          Figure 1.61 Composition of General Link Element 

 
The General Link element is used to model dampers, base isolators, 

compression-only element, tension-only element, plastic hinges, soil springs, etc. 

The 6 springs individually represent 1 axial deformation spring, 2 shear 

deformation springs, 1 torsional deformation spring and 2 bending deformation 

springs as per Figure 1.61. Among the 6 springs, only selective springs may be 

partially used, and linear and nonlinear properties can be assigned. The general 

link can be thus used as linear and nonlinear elements. 

 

The General Link element can be largely classified into Element type and Force 

type depending on the method of applying it to analysis. The Element type 

general link element directly reflects the nonlinear behavior of the element by 

renewing the element stiffness matrix. The Force type on the other hand, does 

not renew the stiffness matrix, but rather reflects the nonlinearity indirectly by 

converting the member forces calculated based on the nonlinear properties into 

external forces.   
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First, the Element type general link element provides three types, Spring, 

Dashpot and Spring and Dashpot. The Spring retains linear elastic stiffness for 

each of 6 components, and the Dashpot retains linear viscous damping for each 

of 6 components. The Spring and Dashpot is a type, which combines Spring and 

Dashpot. All of the three types are analyzed as linear elements. However, the 

Spring type general link element can be assigned inelastic hinge properties and 

used as a nonlinear element. This can be mainly used to model plastic hinges, 

which exist in parts in a structure or nonlinearity of soils. However, this can be 

used as a nonlinear element only in the process of nonlinear time history analysis 

by direct integration. Also, viscous damping is reflected in linear and nonlinear 

time history analyses only if “Group Damping” is selected for damping for the 

structure.  

 

The Force type general link element can be used for dampers such as 

Viscoelastic Damper and Hysteretic System, seismic isolators such as Lead 

Rubber Bearing Isolator and Friction Pendulum System Isolator, Gap 

(compression-only element) and Hook (tension-only element). Each of the 

components retains effective stiffness and effective damping. You may specify 

nonlinear properties for selective components.  
 

The Force type general link element is applied in analysis as below. First, it is 

analyzed as a linear element based on the effective stiffness while ignoring the 

effective damping in static and response spectrum analyses. In linear time 

history analysis, it is analyzed as a linear element based on the effective 

stiffness, and the effective damping is considered only when the damping 

selection is set as “Group Damping”. In nonlinear time history analysis, the 

effective stiffness acts as virtual linear stiffness, and as indicated before, the 

stiffness matrix does not become renewed even if it has nonlinear properties. 

Also, because the nonlinear properties of the element are considered in analysis, 

the effective damping is not used. This is because the role of effective damping 

indirectly reflects energy dissipation due to the nonlinear behavior of the Force 

type general link element in linear analysis. The rules for applying the general 

link element noted above are summarized in Table 1.3.  
 

When the damping selection is set as “Group Damping”, the damping of the 

Element type general link element and the effective damping of the Force type 

general link element are reflected in analysis as below. First, when linear and 

nonlinear analyses are carried out based on modal superposition, they are 

reflected in the analyses through modal damping ratios based on strain energy. 

On the other hand, when linear and nonlinear analyses are carried out by direct 

integration, they are reflected through formulating the element damping matrix. 

If element stiffness or element-mass-proportional damping is specified for the 

general link element, the analysis is carried out by adding the damping or 

effective damping specified for the properties of the general link element.  
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General Link Element Element Type Force Type 

Properties Elastic Damping 
Effective 

Stiffness 

Effective 

Damping 

Static analysis Elastic X Elastic X 

Response spectrum analysis Elastic Linear1) Elastic Linear1) 

Linear Time 

History 

Analysis 

Modal 

Superposition 
Elastic Linear1) Elastic Linear1) 

Direct 

Integration 
Elastic Linear Elastic Linear 

Nonlinear 

Time 

History 

Analysis 

Modal 

Superposition 
Elastic Linear1) 

Elastic 

(virtual) 
Linear1) 

Direct 

Integration 
Elastic Linear 

Elastic 

(virtual) 
Linear 

*1) ‘Strain Energy Proportional’ should be selected.  
 

                                             Table 1.3 Rules for applying general link element (Damping and effective damping are  

                                                       considered only when the damping option is set to “Group Damping”.) 

 
The locations of the 2 shear springs may be separately specified on the member. 

The locations are defined in ratios by the distances from the first node relative to 

the total length of the member. If the locations of the shear springs are specified 

and shear forces are acting on the nonlinear link element, the bending moments 

at the ends of the member are different. The rotational deformations also vary 

depending on the locations of the shear springs. Conversely, if the locations of 

the shear springs are unspecified, the end bending moments always remain equal 

regardless of the presence of shear forces. 

 
The degrees of freedom for each element are composed of 3 translational 

displacement components and 3 rotational displacement components regardless of 

the element or global coordinate system. The element coordinate system follows 

the convention of the truss element. Internal forces produced for each node of the 

element consist of 1 axial force, 2 shear forces, 1 torsional moment and 2 bending 

moments. The sign convention is identical to that of the beam element. In 

calculating the nodal forces of the element, the nodal forces due to damping or 

effective damping of the general link element are found based on Table 1.3. 

However, the nodal forces due to the element mass or element-stiffness-

proportional damping are ignored.  
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Element End Release 

 
When two elements are connected at a node, the stiffness relative to the degrees 

of freedom of the two elements is reflected. Element End Release can release 

such stiffness connections. This function can be applied to beam and plate 

elements, and the methods of which are outlined below. 

 

Beam End Release is applicable for all the degrees of freedom of the two nodes 

of an element. Using partial fixity coefficients can create partial stiffness of 

elements. If all three rotational degrees of freedom are released at both ends of a 

beam element, then the element will behave like a truss element.


 

 

Similarly, Plate End Release is applicable for all the degrees of freedom of three 

or four nodes constituting a plate element. Note that the plate element does not 

retain the rotational degree of freedom about the axis normal to the plane of the 

element. If all the out-of-plane rotational d.o.f. are released at the nodes of a 

plate element, this element then behaves like a plane stress element.


 

 

The end releases are always specified in the Element Coordinate System (ECS). 

Cautions should be exercised when stiffness in the GCS is to be released. 

Further, the change in stiffness due to end releases could produce singular errors, 

and as such the user is encouraged to specify end releases carefully through a 

comprehensive understanding of the entire structure. 

 

Figures 1.61 & 1.62 show boundary condition models depicting the connections 

between a pier and bridge decks, using end releases for beam and plate elements. 

 

 

Refer to “Model> 

Boundaries> 

Beam End Release”  

of On-line Manual. 

Refer to “Model> 

Boundaries> 

Plate End Release”  

of On-line Manual. 
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Figure 1.62 Connection of a pier and bridge decks 

 

 

 

 

 

 
(a) Modeling of beam elements Modeling of plate 

elements 

 
Figure 1.63 Modeling of end releases using beam and plate elements 

Element 1 – Node 4 end release of Fx  & My 

Element 2 – Node 4 end release of My 

  

 

Element 1 – Node 3 & 4 end release 
of Fx  & My 

Element 2 – Node 3 & 4 end release  
of My 

  

 
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Considering Panel Zone Effects 
 

Frame members of civil and building structures are typically represented by 

element centerlines. Whereas, physical joint sizes (panel zones) actually do exist 

at the intersections of the element centerlines. Ignoring such panel zones in an 

analysis will result in larger displacements and moments. In order to account for 

element end eccentricities and panel zone effects at beam-column connections, 

midas Civil provides the following two methods: Note that the terms, beams and 

girders are interchangeably used in this section. (See Figures 1.63 & 1.64) 

 

1. midas Civil automatically calculates rigid end offset distances for all panel 

zones where column and beam members intersect.


 

 

2. The user directly defines the rigid end offset distances at beam-ends.


 

 

 

Rigid end offset distances are applicable only to beam elements, including 

tapered beam elements, in midas Civil. 

 

 

 Automatic consideration of panel zone stiffness 
 

If the bending and shear deformations in the panel zones are ignored, the 

effective length for member stiffness can be written as:  

 

1 i jL  = L - (R  +R )  

 

where, L is the length between the end nodes, and Ri and Rj are the rigid end 

offset distances at both ends. If the element length is simply taken as L1, the 

result will contain some errors by ignoring the actual rigid end deformations. 

midas Civil, therefore, allows the user to alleviate such errors by introducing a 

compensating factor for panel zones (Offset Factor). 

 

1 F i jL  = L - Z  (R  +R )  

 

where, ZF is an offset factor for panel zones. 

 

The value of the offset factor for panel zones varies from 0 to 1.0. The user’s 

discretion is required for determining the factor as it depends on the shapes of 

connections and the use of reinforcement.  

 

The panel zone factor (interchangeably used with rigid end offset factor) does 

not affect the calculation of axial and torsional deformations. The entire element 

length (L) is used for such purposes. 

Refer to “Model> 

Boundaries> 

Panel Zone Effects”  

of On-line Manual. 

Refer to “Model> 

Boundaries> 

Beam End Offsets”  

of On-line Manual. 
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Figure 1.63 Formation of Rigid panel zone at beam-column connection 

 

 

 

 

 
(a) Column connection with 

eccentricity 

Beam-column connection 

with eccentricity 

 
Figure 1.64 Examples of end offsets due to discordant neutral axes 

between beam elements 

centerline of a beam coincides 
with a story level 

Panel Zone 

rigid end offset distance  
of a beam member 
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Using Model>Boundaries>Panel Zone Effects in midas Civil, the GCS Z-axis 

is automatically established opposite to the gravity direction, and the rigid end 

offset distances of the panel zones are automatically considered. Note that the rigid 

end offset distances are applicable only to the beam–column connections. The columns 

represent the elements parallel to the GCS Z-axis, and the beams represent the 

elements parallel to the GCS X-Y plane.


 

 

When the Panel Zone Effects function is used to calculate the rigid end offset 

distances automatically, the user may select the “Offset Position” for the “Output 

Position”. In that case, the element stiffness, applications of self-weight and 

distributed loads, and the output locations of member forces vary with the offset 

locations adjusted by the offset factor. If “Panel Zone” is selected, the offset 

factor is reflected in the element lengths for the element stiffness only. The 

locations for applying self-weight and distributed loads and the output locations 

of member forces are determined on the basis of the boundaries of the panel 

zones, i.e., column faces for beams and beam faces for columns. 

 

Selecting “Offset Position” with an offset factor, 1.0 for “Output Position” in 

Panel Zone Effects is tantamount to selecting “Panel Zone” with an offset factor 

of 1.0. Conversely, selecting “Offset Position” with an offset factor of 0.0 for 

“Output Position” becomes equivalent to a case where no rigid end offset 

distances are considered.  

 

When rigid end offset distances are to be automatically calculated by using 

Panel Zone Effects, “Output Position” determines the way in which self-weight 

and distributed loads are applied and the output locations of member forces. 

 

Element stiffness calculation 

In calculating the axial and torsional stiffnesses of an element, the distance 

between the end nodes is used. Whereas, an adjusted length, L1=L-

ZF(Ri+Rj), which reflects the offset factor, is used for the calculation of the 

shear and bending stiffnesses, regardless of the selection of the location for 

member force output (See Figure 1.65). 

 

Calculation of distributed loads 

If “Panel Zone” is selected for “Output Position”, any distributed load 

within a rigid end offset distance is transferred to the corresponding node. 

The remaining distributed loads are converted to shear forces and moments 

as shown in Figure 1.66. If “Offset Position” is selected for “Output 

Position”, the above forces are calculated relative to the rigid end offset 

locations that reflect the offset factor. 

Refer to “Model> 

Structure Type”  

of On-line Manual. 
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Length considered for the self-weight 

The self-weight of a column member is calculated for the full element 

length without the effect of rigid end offset distances. For the self-weight of 

a beam, the full nodal distance less the rigid end offset distances, L1= L-

(Ri+Rj), is used when “Panel Zone” is selected for “Output Position”. If 

“Offset Position” is selected for “Output Position”, the full nodal distance 

is reduced by the adjusted rigid end offset distances, L1 = L-ZF (Ri + Rj). 

The self-weight calculated in this manner is converted into shear forces and 

moments using the load calculation method described above. 

 

Output position of member forces 

If “Panel Zone” is selected for “Output Position”, the member forces for 

columns and beams are produced at the ends of the panel zones and the 

quarter points of the net lengths between the panel zones. If “Offset 

Position” is selected for “Output Position” in the case of beams, the results 

are produced at the similar positions relative to the adjusted rigid end offset 

distances. Note that the output positions for the “Panel Zone” are identical 

to the case where “Offset Position” is selected for “Output Position” with 

an offset factor of 1.0. 

 

Rigid end offset distance when the beam end release is considered 

If one or both ends of a column or a beam are released to form pinned 

connections, the rigid end offset distances for the corresponding nodes will 

not be considered. 

 

Method of considering column panel zones 

The Panel zones of a column are calculated at the top and botoom of the 

column (See Figure 1.65). 

 

At the connection point of a column member and beam (girder) members, the 

panel zones of the column is calculated on the basis of the depths and directions 

of the connected beams. In the case of a beam-column connection as shown in 

Figure 1.67, the panel zones of the column are calculated separately for the ECS 

y and z-axis. 
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When multi-directional beam members are connected to a column, the panel 

zone in each direction is calculated as follows: (See Figure 1.68) 

 

RCy = BD  cos2 θ       RCz = BD  sin2 θ 

RCy : Rigid end offset distance about the ECS y-axis of the column top  

RCz : Rigid end offset distance about the ECS z-axis of the column top  

BD : Depth of a beam (girder) connected to the column 

θ : Angle of a beam (girder) orientation to the ECS z-axis of the column  

 

The largest value of the panel zones calculated for the beam members is selected 

for the panel zone of the column in each direction. 

 

 

 

 
(a) Panel zones of a column 

 

column centerline axis 
(parallel with the z-axis) 

Panel Zone 

Panel Zone 

when the centerline of beam section  
coincides with the story level 

rigid end offset distance (A) 
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(b) Panel zones of a beam 

 

 

 

 

Offset Factor effective length for stiffness caculation 

1.00 1.00 ( )L A B    

0.75 0.75 ( )L A B    

0.50 0.50 ( )L A B    

0.25 0.25 ( )L A B    

0.00 0.00 ( )L A B    

Offset Fctor: rigid end offset factor entered in “Panel Zone Effects” 

 
(c) Effective lengths for stiffness calculation (B=0 for columns) 

 
Figure 1.65 Effective lengths used to calculate bending/shear stiffness  

when “Panel Zone Effects” is used 

column centerline axis 

column member 

Panel Zone 

beam member 

clear length of beam 

length between nodes (L) 

Story (Floor) 

level 

Panel Zone 

column member 

column centerline axis 

B A 
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Li = 1.0  Ri “Panel Zone” is selected for the locations of member force output. 
 

Li=ZF  Ri “Offset Position” is selected for the locations of member force output. 
 

Lj = 1.0  Rj “Panel Zone” is selected for the locations of member force output. 
 

Lj=ZF  Rj “Offset Position” is selected for the locations of member force output. 
 

Ri  :  rigid end offset distance at i-th node 
 

Rj  :  rigid end offset distance at j-th node 
 

ZF :  rigid end Offset Factor 
 

V1, V2 :  shear forces due to distributed load between the offset ends 
 

M1, M2 :  moments due to distributed load between the offset ends 
 

V3, V4 :  shear forces due to distributed load between the offset ends  
   and the nodal points 

 
(a) Beam member 

 

V4 V2 V3 V1 

M1 M2 

˝ ˝ ˝ ˝ 

rigid end offset location at i–th node rigid end offset location at j–th node 

distributed load on beam element 

i-th node 

zone in which load is converted into 
shear force only at i–th node 

zone in which load is 
converted into both 
shear and moment 

zone in which load is converted 
into shear force only at j–th node 

L1 (length for shear/bending 
stiffness calculaton) 

locations for member force output () 

j–th node 

Story Level 
Li Lj 

L 
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LR = 1.0  R (“Panel Zone” is selected for the location of member force output) 
 

LR = ZF  R (“Offset Position” is selected for the locations of member force output) 
 
Where, R is the rigid end offset factor 
 

V1, V2   :  shear forces due to distributed load between the offset end and the bottom node) 
 

M1, M2  :  moments due to distributed load between the offset end and the bottom node 
 

V3         :  shear force due to distributed load between the offset end and the top node 

 
Column member 

 

 
Figure 1.66 Load distribution and locations of member force output when “Panel Zone 

Effects” is used to consider rigid end offset distances 
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(a) Plan 

 

 

(b) Sectional Elevation 
 

Figure 1.67 Rigid end offset distances of a column using “Panel Zone Effects” 

ECS y-axis of column 

column member 

ECS z–axis  
of column 

column centerline axis  
(parallel with the GCS Z–axis) beam member 1 

beam member 2 

Story (Floor) Level 

column centerline axis 

rigid end offset distance 
at the top of the column 
for bending about the 
ECS z-axis 

rigid end offset distance 
at the top of the column 
for bending about the 
ECS y-axis 

beam member 2 

beam  
member 1 
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: 250 0 250 0 0.0 0 250.0

: 200 40 200 40 82.6 200 0 117.4

: 150 90 150 90 150

2 2

z y

2 2

z y

2

z y

beam member1 BD         RC sin      RC cos

beam member2 BD      RC sin     RC cos

beam member3 BD       RC sin      RC

       

        

      150 90 0.0

MAX(250.0,117.4,0.0) 250.0 MAX(0.0,82.6,150.0) 150.0

2

y z

cos

rigid end offset distance of  the column

RC       RC

  

   

 

 
where, BD  : beam depth 

RCz : rigid end offset distance for bending about the minor axis 
RCy : rigid end offset distance for bending about the major axis 

 
Figure 1.68 Example for calculating rigid end offset distances of a column using  

“Panel Zone Effects” 

θ 

beam member 3 

column centerline axis 

beam member 1 
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Method of calculating rigid end offset distances of beam (girder) members 

The rigid end offset distance of a beam (girder) member at a column is 

based on the depth and width of the column member at the beam-end and 

calculated as follows: 

 

- Formula for calculating rigid end offset distance in each direction 

(See Figure 1.69) 

 
2 2cos sin

2 2

Depth Width
RB

  
   

 

Depth: dimension of the column section in the ECS z-axis direction 

Width: dimension of the column section in the ECS y-axis direction 

θ: Angle of the beam (girder) orientation to the ECS z-axis of the column 

 

 

 
Figure 1.69 Rigid end offset distances of beam (girder) members using  

“Panel Zone Effects” 
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cos sin

cos



 
 
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

depth of column section =   width of column section= ,  for  = 

rigid end offset distance at i-th node = 
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2
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

 

 
Figure 1.70 Example for calculating rigid end offset distances of a beam using  

“Panel Zone Effects” 

 

 

 

 Method by which the user directly specifies the rigid end offset 

distances at both ends of beams using “Beam End Offsets” 
 

“Beam End Offsets” allows the user to specify rigid end offset distances using 

the following two methods.


 

 

1. Offset distances at both ends are specified in the X, Y and Z-axis 

direction components in the GCS 

 

2. Offset distances at both ends are specified in the ECS x-direction 

 

The first method is generally used to specify eccentricities at connections. In this case, 

the length between the end offsets is used to calculate element stiffness, distributed load 

and self-weight. The locations for member force output and the end releases are also 

adjusted relative to the end offsets (See Figure 1.64 (b) & (c)). 

 

The second method is used to specify eccentricities in the axial direction. It 

produces identical element stiffness, force output locations and end release 

conditions to the case where “Panel Zone” with an offset factor, 1.0 is selected 

in Panel Zone Effects. However, the full length between two nodes is used for 

distributed loads, instead of the adjusted length. 

Refer to “Model> 

Boundaries> 

Beam End Offsets”  

of On-line Manual. 

beam member 

column centerline at i– th node 
column centerline at j– th node 

ECS x–axis 
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Master and Slave Nodes (Rigid Link Function) 
 

The rigid link function specified in Model>Boundaries>Rigid Link constrains 

geometric, relative movements of a structure. 

 

Geometric constraints of relative movements are established at a particular node 

to which one or more nodal degrees of freedom (d.o.f.) are subordinated. The 

particular reference node is called a Master Node, and the subordinated nodes 

are called Slave Nodes. 

 

The rigid link function includes the following four connections:  

 

1. Rigid Body Connection 
 

2. Rigid Plane Connection 
 

3. Rigid Translation Connection 
 

4. Rigid Rotation Connection 

 

Rigid Body Connection constrains the relative movements of the master node 

and slave nodes as if they are interconnected by a three dimensional rigid body. 

In this case, relative nodal displacements are kept constant, and the geometric 

relationships for the displacements are expressed by the following equations:  

 

UXs = UXm + RYm ΔZ - RZm ΔY 

UYs = UYm + RZm ΔX - RXm ΔZ 

UZs = UZm + RXm ΔY - RYm ΔX 

RXs = RXm 

RYs = RYm 

RZs = RZm 

 

where, ΔX = Xm - Xs,  ΔY = Ym - Ys,  ΔZ = Zm - Zs 

 

The subscripts, m and s, in the above equations represent a master node and 

slave nodes respectively. UX, UY and UZ are displacements in the Global 

Coordinate System (GCS) X, Y and Z directions respectively, and RX, RY and RZ 

are rotations about the GCS X, Y and Z-axes respectively. Xm, Ym and Zm 

represent the coordinates of the master node, and Xs, Ys and Zs represent the 

coordinates of a slave node. This feature may be applied to certain members 

whose stiffnesses are substantially larger than the remaining structural members 

such that their deformations can be ignored. It can be also used in the case of a 

stiffened plate to interconnect its plate and stiffener.  
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Rigid Plane Connection constrains the relative movements of the master node 

and slave nodes as if a planar rigid body parallel with the X-Y, Y-Z or Z-X plane 

interconnects them. The distances between the nodes projected on the plane in 

question remain constant. The geometric relationships for the displacements are 

expressed by the following equations: 

 

Rigid Plane Connection assigned to X-Y plane 
 

UXs = UXm - RZmΔY 

UYs = UYm + RZmΔX 

RZs = RZm 

 

Rigid Plane Connection assigned to Y-Z plane 
 

UYs = UYm - RXmΔZ 

UZs = UZm + RXmΔY 

RXs = RXm 

 

Rigid Plane Connection assigned to Z-X plane 
 

UZs = UZm - RYmΔX 

UXs = UXm + RYmΔZ 

RYs = RYm 

 

This feature is generally used to model floor diaphragms whose relative in-plane 

displacements are negligible.  

 

Rigid Translation Connection constrains relative translational movements of the 

master node and slave nodes in the X, Y or Z-axis direction. The geometric 

relationships for the displacements are expressed by the following equations: 

 

Displacement constraint in the X-axis direction 
 

UXs = UXm 

 

Displacement constraint in the Y-axis direction 
 

UYs = UYm 

 

Displacement constraint in the Z-axis direction 
 

UZs = UZm 
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Rigid Rotation Connection constrains the relative rotational movements of the 

master node and slave nodes about the X, Y or Z-axis. The geometric 

relationships for the displacements are expressed by the following equations: 

 

Rotational constraint about the X-axis 
 

RXs = RXm 

 

Rotational constraint about the Y-axis 
 

RYs = RYm 

 

Rotational constraint about the Z-axis 
 

RZs = RZm 

 

The following illustrates an application of Rigid Plane Connection to a building 

floor (or any other structural plate) diaphragm to help the user understand the 

concept of the rigid link feature. 

 

When a building is subjected to a lateral load, the relative horizontal deformation 

at any point in the floor plane is generally negligible compared to that from other 

structural members such as columns, walls and bracings. This rigid diaphragm 

action of the floor slab can be implemented by constraining all the relative in-

plane displacements to behave as a unit. The movements consist of two in-plane 

translational displacements and one rotational displacement about the vertical 

direction. 
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Figure 1.71 Typical structure with floor diaphragm subjected to a lateral load 

 

 

 

As illustrated in Figure 1.71, when a structure is subjected to a lateral load and 

the in-plane stiffness of the floor is significantly greater than the horizontal 

stiffness of the columns, the in-plane deformations of the floor can be ignored. 

Accordingly, the values of δ1 and δ2 may be considered equal. 

After 
deformation 

Before 
deformation 

1 2 

1 2
   

floor diaphrarm 

lateral load 
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Ф1 ≃ Ф2 ≃ Ф3 ≃ Ф4 ≃ Ф5 
 

Figure 1.72 Single story structure with a floor (plate) diaphragm subjected  

to a torsional moment about the vertical axis 

 

When a single-level structure, as illustrated in Figure 1.72, is subjected to a 

torsional moment about the vertical direction and the in-plane stiffness of the 

floor is significantly greater than the horizontal stiffness of the columns, the 

entire floor diaphragm will be rotated by , where,   1  2  3  4. 

Accordingly, the four degrees of freedom can be reduced to a single degree of 

freedom. 

floor diaphragm 

torsional moment 
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Figure 1.73 shows a process in which a total of 24 (64) degrees of freedom are 

compressed to 15 d.o.f. within the floor plane, considering its diaphragm actions. 

 

 

 

 

 

 
UX  : displacement degree of freedom in the X-direction at the corresponding node 
UY  : displacement degree of freedom in the Y-direction at the corresponding node 
UZ  : displacement degree of freedom in the Z-direction at the corresponding node 
RX  :  rotational degree of freedom about the X-axis at the corresponding node 
RY  :  rotational degree of freedom about the Y-axis at the corresponding node 
RZ  :  rotational degree of freedom about the Z-axis at the corresponding node 

 
Figure 1.73 Reduction of d.o.f for floor diaphragm of significant in-plane stiffness 

floor diaphram 

master node slave node 

UxUyRz 

floor diaphram 

slave nodes 

master node 
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UXm : X-direction displacement of master node 
UYm : Y-direction displacement of master node 
RZm : rotation about Z-axis at master node 
UXs : X-direction displacement of slave node 
UYs : X-direction displacement of slave node 
RZs : rotation about Z-axis at slave node 

 
Figure 1.74 Displacements of an infinitely stiff floor diaphragm due to horizontal loads 

 

 

 

As illustrated in Figure 1.74, if translational and rotational displacements take 

place simultaneously in an infinitely stiff floor diaphragm due to a lateral load, 

the displacements of a point on the floor plane can be obtained by: 

 

UXs = UXm - RZmΔY 

UYs = UYm + RZmΔX 

RZs = RZm 

 

Reducing number of degrees of freedom by geometric constraints can 

significantly reduce the computational time for analysis. For instance, if a 

building structure is analyzed with the floors modeled as plate or plane stress 

elements, the number of nodes will increase substantially. Each additional node 

RZm RZs 

initial floor diaphram 

slave node 
master node 

displaced floor diaphram 
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represents 3 additional degrees of freedom even if one considers d.o.f in lateral 

directions only. A large number of nodes in an analysis can result in excessive 

program execution time, or it may even surpass the program capacity. In general, 

solver time required is proportional to the number of degrees of freedom to the 

power of 3. It is, therefore, recommended that the number of degrees of freedom 

be minimized as long as the accuracy of the results is not compromised. 

 

Figure 1.75 shows applications of Rigid Body Connection and Rigid Plane 

Connection. Figure 1.75 (a) illustrates an application of Rigid Link using Rigid 

Body Connection. Here a rectangular tube is modeled with plate elements in the 

region where a detail review is required, beyond which a beam element 

represents the tube. Then, Rigid Body Connection joins the two regions. 

 

Figure 1.75 (b) shows an application of Rigid Plane Connection for a column 

offset in a two-dimensional plane. Whenever Rigid Link is used in a plane, 

geometric constraints must be assigned to two translational displacement 

components and one rotational component about the perpendicular axis to the 

plane. 

 

If a structural analysis model includes geometric constraints and is used for a 

dynamic analysis, the location of the master node must coincide with the mass 

center of all the masses pertaining to the slave nodes. This condition also applies 

to the masses converted from self-weights. 

 

 

 
(a) A tube modeled using a beam element and plate elements,  

and connected by Rigid Body Connection 

rectangular tube modeled with plate elements 

Rigid Link 

rectangular tube modeled 
as a beam elemant 

master node 
○:  slave nodes (12 nodes) 

 * all 6 degrees of freedom of 

the slave nodes are linked 
to the master node. 
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(b) Eccentricity of an offset-column linked by Rigid Plane Connection 

 

 
Figure 1.75 Application examples of geometric constraints 

* all slave node’s d.o.f. in the X-Z 

plane are linked to the master 
node (translational displacement 
d.o.f. in the X and Z–directions  
and rotational d.o.f. about the  
Y-axis. 

eccentricity eccentricity 

master node 
slave node 
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Specified Displacements of Supports 
 

“Specified Displacements of Supports” is used to examine structural behaviors 

under the condition where displacements for restrained degrees of freedom are 

known in advance. It is also commonly referred to as “Forced Displacements”.


 

 

 

In practice, this function is effectively used in the following cases: 

 

Detail safety assessment of an existing building, which has experienced 

post-construction deformations. 
 

Detail analyses of specific parts of a main structure. Displacements 

obtained from the analysis of a total structure form the basis of 

boundary conditions for analyzing specific parts. 
 

Analyses of existing buildings for foundation support settlements. 
 

Analyses of bridges reflecting support settlements.  

 

midas Civil allows you to define Specified Displacements of Supports by 

individual load cases. If Specified Displacements of Supports are assigned to 

unrestrained nodes, the program automatically restrains the corresponding 

degrees of freedom of the nodes. A separate model is required if the analysis 

results of unrestrained degrees of freedom are desired. 

 

Entering accurate values for Specified Displacements of Supports may become 

critical since structural behaviors are quite sensitive to even a slight variation. 

Thus, whenever possible, specifying all six degrees of freedom is recommended. 

In the case of analyzing an existing structure for safety evaluation, a deformed 

shape analysis may be required. However, it is typically not possible to measure 

in-situ rotational displacements. In such a case, only translational displacements 

are specified for an approximate analysis, but the resulting deformations must be 

reviewed against the deformations of the total structure.  

 

When the displacements are obtained from the initial analysis of a total structure 

and subsequently used for a detailed analysis of a particular part of the structure, 

all the 6 nodal degrees of freedom must be specified at the boundaries. In 

addition, all the loads present in the detail model must be specified.  

 

Specified Displacements generally follow the GCS unless NCS are previously 

defined at the corresponding nodes. 

Refer to  

“Load> Specified 

Displacements of 

Supports"  

of On-line Manual. 
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Figure 1.76 illustrates a procedure for analyzing a beam-corner column 

connection in detail. 

 

1. As shown on the left-hand side of Figure 1.76 (a), an initial analysis is 

performed for the entire structure, from which the displacements at the 

connection nodes and boundaries are extracted for a detail analysis.  

 

2. A total of 24 displacement components (6 d.o.f. per node) extracted from 

the 4 boundary nodes are assigned to the model, as shown to the right of 

Figure 1.76 (a). A master node is created at the centroid of each boundary 

section, and slave nodes are created and connected to the master node by 

Rigid Link at each section. The nodal displacements at the boundary 

sections from the analysis results of the entire structure are applied to the 

master nodes. Boundary sections should be located as far as possible from 

the zone of interest for detail analysis in order to reduce errors due to the 

effects of using Rigid Link.


 

 

3. All the loads (applied to the entire structure model) that fall within the range 

of the detail analysis model are entered for a subsequent detail analysis. 

 

 

 

 
(a) Total structure and connection detail 

Refer to “Master and 

Slave Nodes in Model> 

Boundaries>Rigid Link”  

of On-line manual. 

connection for a detail analysis boundary section column member 

boundary 
section 

beam (girder) 
member 

boundary section 

beam (girder) 
member 

boundary section 

●: node 

○: boundaries for the detail model  

    (displacements of the total 
    analysis at this node are 
    assigned to the detail model 
    as specified displacements.) 
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Rigid links (master and slave nodes) are assigned to  
the boundary sections, and the specified displacements,  
the displacements obtained from the initial analysis  
for the entire structure, are assigned to the master node 
at the centroid of each section. 

 
(b) Detail FEM model of a joint 

 
Figure 1.76 Detail analysis of a joint using specified displacements
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2. midas Civil Analysis Options 
 

 

 

 

 

 

 

Analysis Options 

 
When a structure is subjected to external loads, the corresponding structural 

response may exhibit material nonlinearity to a certain extent. However, in most 

structural analyses for design purposes, structures behave almost linearly 

provided that the member stresses remain within the limits of design codes. 

Material nonlinearity thus is rarely considered in practice. 

 

midas Civil is formulated on the basis of linear analysis, but it is also capable of 

carrying out geometric nonlinear analyses. midas Civil implements nonlinear 

elements (tension or compression-only), P-Delta and large displacement analyses, etc. 

 

The structural analysis features of midas Civil include basic linear analysis and 

nonlinear analysis in addition to various analysis capabilities required in 

practice. 

 

The following outlines some of the highlights of the analysis features: 

 

Linear Static Analysis 

 

Thermal Stress Analysis 

 

Linear Dynamic Analysis 

Eigenvalue Analysis 

Response Spectrum Analysis 

Time History Analysis 

 

Linear Buckling Analysis 

 

Nonlinear Static Analysis 

P-Delta Analysis 

Large Displacement Analysis 

Nonlinear Analysis with Nonlinear Elements 

Pushover Analysis 
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Other analysis options 

Construction Sequence Analysis 

Moving Load Analysis for bridges 

Bridge Analysis automatically reflecting Support Settlements 

Composite Steel Bridge Analysis Considering Section Properties of Pre- 

and Post-Combined Sections 

 

midas Civil permits a multi-functional analysis incorporating more than one 

feature from the above simultaneously. However, response spectrum and time 

history analyses cannot be executed together. 

 

 

 

Linear Static Analysis 

 
The basic equation adopted in midas Civil for linear static analysis is as follows:  

 

    K U P  

 

where, 

[ ]K : Stiffness matrix 

{ }U : Displacement vector 

{ }P : Load vector 

 

midas Civil allows unlimited numbers of static load cases and load combinations.  
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Free Vibration Analysis  

 

Eigenvalue Analysis 

 
Mode shapes and natural periods of an undamped free vibration are obtained 

from the characteristic equation below. 

 

     2

n n nK M    

 

where, 

[ ]K  : Stiffness matrix 

[ ]M  : Mass matrix 

2

n   : n-th mode eigenvalue 

{ }n : n-th mode eigenvector (mode shape) 

 

Eigenvalue analysis is also referred to as “free vibration analysis” and used to 

analyze the dynamic characteristics of structures.  

 

The dynamic characteristics obtained by an eigenvalue analysis include vibration 

modes (mode shapes), natural periods of vibration (natural frequencies) and 

modal participation factors. They are determined by the mass and stiffness of a 

structure.  

 

Vibration modes take the form of natural shapes in which a structure freely 

vibrates or deforms. The first mode shape or natural vibration shape is identified 

by a shape that can be deformed with the least energy or force. The shapes 

formed with increases in energy define the subsequent higher modes. 

 

Figure 2.1 shows the vibration modes of a cantilever beam arranged in the order 

of their energy requirements for deflected shapes, starting from the shape formed 

by the least energy. 

 

A natural period of vibration is the time required to complete one full cycle of 

the free vibration motion in the corresponding natural mode.  

 

The following describes the method of obtaining the natural period of a single 

degree of freedom (SDOF) system: Assuming zero damping and force in the 

governing motion equation of a SDOF system, we can obtain the 2nd order 

linear differential equation <Eq. 1> representing a free vibration. 

Refer to  

“Analysis> Eigenvalue 

Analysis Control” 

of On-line Manual. 
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<Eq. 1> 

( )mu cu ku p t    

0mu ku   

 

Since u is the displacement due to vibration, if we simply assume u = Acosωt, 

where, A is a constant related to the initial displacement, <Eq. 1> can be written 

as 

 

<Eq. 2> 
2( ) cos 0m k A t     

 

In order to satisfy the <Eq. 2>, the value of the parenthesis must be zero, which 

leads to <Eq. 3>. 

 

<Eq. 3> 

2 k

m
 ,   

k

m
  , 

2
f 




,   

1
T

f
  

 

where, ω2, ω, f and T are eigenvalue, rotational natural frequency, natural 

frequency and natural period respectively. 
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(a) Mode shapes 

 

 

 
1/ 2

4

2

2
i

i

mL
T

EI





 
  

 
: natural period of a slender cantilever beam 

where, L=100, E=1000000, I=0.1, m=0.001 

 
(b) Natural periods 

 

 
Figure 2.1 Mode shapes and corresponding natural periods of 

 a prismatic cantilever beam 
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The modal participation factor is expressed as a contribution ratio of the 

corresponding mode to the total modes and is written as 

 

<Eq. 4> 

2

i im

m

i im

M

M




 




 

 
where, 

m  : Modal participation factor 

m  : Mode number 

iM : Mass at location i 

im : m-th mode shape at location i 

 

In most seismic design codes, it is stipulated that the sum of the effective modal 

masses included in an analysis should be greater than 90% of the total mass. This 

will ensure that the critical modes that affect the results are included in the 

design. 

 

<Eq. 5> 
2

2

im i

m

im i

M
M

M





  



 

 
where, Mm: Effective modal mass 

 

If certain degrees of freedom of a given mass become constrained, the mass will 

be included in the total mass but excluded from the effective modal mass due to 

the restraints on the corresponding mode vectors. Accordingly, when you attempt 

to compare the effective modal mass with the total mass, the degrees of 

freedom pertaining to the mass components must not be constrained.  

 

For instance, when the lateral displacement d.o.f. of a building basement are 

constrained, it is not necessary to enter the lateral mass components at the 

corresponding floors.  

 

In order to analyze the dynamic behavior of a structure accurately, the 

analysis must closely reflect the mass and stiffness, which are the important 

factors to determine the eigenvalues. In most cases, finite element models can 

readily estimate the stiffness components of structural members. In the case of 

mass, however, you are required to pay a particular attention for an accurate 

estimate. The masses pertaining to the self-weights of structural components are 

relatively small compared to the total mass. It is quite important that an 

eigenvalue analysis accounts for all mass components in a structure, such as 

floor slabs and claddings among other masses. 
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Mass components are generally specified as 3 translational masses and 3 

rotational mass moments of inertia consistent with 6 degrees of freedom per 

node. The rotational mass moments of inertia pertaining to rotational mass 

inertia do not directly affect the dynamic response of a structure. Only 

translational ground accelerations are typically applied in a seismic design. 

However, when the structure is of an irregular shape, where the mass center does 

not coincide with the stiffness center, the rotational mass moments of inertia 

indirectly affect the dynamic response by changing the mode shapes. 

 

Mass components are calculated by the following equations: (See Figure 2.2) 

 

Translational mass 

dm  

 

Rotational mass moment of inertia 
2r dm  

 

where, r is the distance from the total mass center to the center of an 

infinitesimal mass.  

 

The units for mass and rotational mass moment of inertia are defined by the unit 

of weights divided by the gravitational acceleration, W(T2/L) and the unit of 

masses multiplied by the square of a length unit, W(T2/L)L2 respectively. Here, 

W, T and L represent weight, time and length units respectively. In the case of an 

MKS or English unit system, the mass is determined by the weight divided by 

the gravitational acceleration. The masses in an SI unit system directly use the 

weights in the MKS units, whereas the stiffness or loads in the MKS units are 

multiplied by the gravitational acceleration for the SI unit system. 

 

midas Civil uses lumped masses in analyses for efficiency. Mass data can be 

entered in the main menu through Model>Masses>Nodal Masses, Floor 

Diaphragm Masses or Loads to Masses. 

 

midas Civil adopts the subspace iteration method for the solution of an 

eigenvalue analysis, which is suitable for the analyses of large structures. 
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Ritz Vector Analysis 
 

Ritz vector analysis is an approach, which finds natural frequencies and mode 

shapes representing the dynamic properties of a structure. The use of Ritz 

vectors is known to be more efficient than using Eigen vector analysis for 

calculating such dynamic properties. This method is an extension of the 

Rayleigh-Ritz approach, which finds a natural frequency by assuming a mode 

shape of a multi-degree of freedom structure and converting it into a single 

degree of freedom system.   

 
We now assume that the displacement vector in the equation of motion for a 

structure of n – degrees of freedom can be expressed by combining  p number of 

Ritz vectors. Here, p is smaller than or equal to n. 

 

Mu( t )+Cu( t )+ Ku( t )= p( t )      (1) 
p

i i

i 1

u( t ) ψ z ( t ) Ψz( t )


       (2) 

 

where,  

M : Mass matrix of the structure 

C : Damping matrix of the structure 

K : Stiffness matrix of the structure 

( )u t : Displacement vector of the structure with n – degrees of freedom  

( )z t  : Generalized coordinate vector 

( )p t : Dynamic load vector 

iψ   : i - th Ritz vector 

( )iz t : i - th Generalized coordinate  

T

1 i pΨ= ψ ψ ψ   : Ritz vector matrix 

 

From the above assumption, the equation of motion of n – degrees of freedom 

can be reduced to the equation of motion of p – degrees of freedom.   

 

( ) ( ) ( ) ( )Mz t +Cz t + Kz t = p t      (3) 

 

where,  
TM Ψ MΨ  : Mass matrix of the reduced equation of motion 

TC Ψ CΨ  : Damping matrix of the reduced equation of motion 
TK Ψ KΨ  : Stiffness matrix of the reduced equation of motion 

( ) ( )Tp t Ψ p t : Dynamic load vector of the reduced equation of motion 

 

The following eigenvalue is formulated and analyzed for the reduced equation of 

motion: 
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2

i i iKφ Mφ                  (4) 

 

where,  

iφ  : Mode shape of the reduced equation of motion 

i
 : Natural frequency of the reduced equation of motion 

 

Using the above eigenvalue solution and assuming the classical damping matrix, 

the reduced equation of motion can be decomposed into the equation of motion 

for a single degree of freedom for each mode as follows:  

2 ( )
( ) 2 ( ) ( )

T

i
i i i i i T

Ψ p t
q t + q t + q t =

Ψ MΨ
      (5) 

1

( ) ( )
p

i i

i

z t φ q t


       (6) 

where 

( )iq t :  i - th mode coordinate 

i
 :  i - th mode damping ratio 

 

The eigenvalue solution of the reduced equation of motion, i , represents an 

approximate solution for the natural frequency of the original equation of 

motion.  

 

 i i
       (7) 

where,  

i
 : Approximate solution for i- th mode shape 

 

A mode shape of a structure is a vector, which defines the mapping relationship 

between the displacement vector of the equation of motion and the mode 

coordinate. The approximate mode shape obtained by Ritz vector analysis is thus 

defined by the relationship between the displacement vector of the original 

equation of motion, ( )u t , and the mode coordinate, ( )iq t , as noted below.   

 

 
1

( ) ( ) ( )
p

i i

i

u t Ψz t Ψφ q t


       (8) 

 

Accordingly, the approximate solution for the i – th mode shape is defined as 

 

i iφ Ψφ        (9) 

where,  

iφ  :   Approximate solution for the i – th mode shape 
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The approximate mode shape vector in Ritz vector analysis retains orthogonality 

for the original mass and stiffness matrices similar to that for eigenvalue 

analysis.  

 

The approximate solution for natural frequencies and mode shapes in Ritz vector 

analysis is used for calculating modal participation factors and effective modal 

masses similar to a conventional eigenvalue analysis.  

 

When a time history analysis is carried out by modal superposition on the basis 

of the results of Ritz vector analysis, the above equation of motion (5) is used.  

 

The Ritz vector, which assumes the deformed shape of a structure, is generally 

created by repeatedly calculating the displacement due to loads applied to the 

structure. The user first specifies the initial load vector. The basic assumption 

here is that the dynamic loading changes with time, but the spatial distribution 

for each degree of freedom follows the initial load vector specified by the user. 

Next, the first Ritz vector is obtained by performing the first static analysis for 

the specified initial load vector.  

 
(1) (1)Kψ = r  

(1) 1 (1)ψ = K r  

where, 

K  : Stiffness matrix of the structure 
(1)ψ  : First Ritz vector 

(1)r   : User specified initial load vector 

 

The first Ritz vector thus obtained is assumed as the structural displacement. 

However, the above static analysis ignores the effect of the inertia force 

developed by the dynamic response of the structure. Accordingly, the 

displacement due to the inertia force is calculated through additional repeated 

calculations. The distribution of acceleration for the structure is assumed to 

follow the displacement vector calculated before, which is the first Ritz vector. 

The inertia force generated by the acceleration is calculated by multiplying the 

mass vector. The inertia force is then assumed to act as a loading, which induces 

additional displacement in the structure, and static analysis is carried out again.  

 
(2) (1)Kψ = Mψ  

(2) 1 (1)ψ = K Mψ  

where, 
M  : Mass matrix of the structure 

(2)ψ  : Second Ritz vector 

 

The second Ritz vector thus obtained in the above equation also reflects a static 

equilibrium only. Assuming the above equation is expressed without considering 
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the acceleration distribution, the above process is repeated in order to calculate 

the number of Ritz vectors specified by the user.  

 

The user may specify a multiple number of initial load vectors. The number of 

Ritz vectors to be generated can be individually specified for each initial load 

vector. However, the total number of Ritz vectors to be generated can not exceed 

that of real modes, which exist in the equation of motion. Also, those Ritz 

vectors already generated in the repetitive process are deleted once linearly 

dependent Ritz vectors are calculated. For this reason, the generation cycle ends 

if linearly independent Ritz vectors can not be calculated any longer. This means 

that the initial load vectors specified by the user alone can not find the specified 

number of modes.  

 

The initial load vectors that can be specified in the MIDAS programs are an 

inertia force due to ground acceleration in the global X, Y or Z direction, a user-

defined static load case and a nonlinear link force vector. The inertia force due to 

ground acceleration in the global X, Y or Z direction is mainly used to find the 

Ritz vector related to the displacement resulting from the ground acceleration in 

the corresponding direction.  

 

The user-defined static load case is used to find the Ritz vectors for a dynamic 

load with specific distribution. A common static load case (dead load, live load, 

wind load, etc.) may be used, or an artificially created static load case may be 

used to generate Ritz vectors. 

 

The member force vectors of nonlinear link elements are used to generate Ritz 

vectors. The member forces generated in each nonlinear link element are applied 

to the structure as a load vector. For only the degrees of freedom checked by the 

user among the 6 degrees of freedom in an element, initial load vectors having 

unit forces individually are composed and used for generating the Ritz vectors. 

However, the member force vectors of link elements do not have to be used in 

the analysis of a structure, which contains nonlinear link elements. The user 

specifies initial load vectors at his/her discretion, which should adequately 

reflect the structural deformed shape under the given analysis condition.  

 

When compared with eigenvalue analysis, Ritz vector analysis has the following 

advantages:  

 

Ritz vectors are founded on static analysis solutions for real loads. Even if a 

smaller number of modes are calculated in Ritz vector analysis, the effects of 

higher modes are automatically reflected. For example, the first mode shape in a 

Ritz vector analysis can be different from that in an eigenvalue analysis, which is 

attributed to representing the effects of higher modes. Also, Ritz vector analysis 

finds only the mode shapes pertaining to the loads acting on the structure, 

thereby eliminating the calculations for unnecessary modes. Ritz vector analysis 

thus reduces the number of modes for finding accurate results. Ritz vector 
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analysis requires a less number of modes to attain sufficient modal mass 

participation compared to eigenvalue analysis.  
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Consideration of Damping  

 
Overview of Damping 

 
Structural damping in a dynamic analysis can be largely classified into the 

following: 

 

 Modal damping 

 

 Proportional damping 

- Mass proportional type 

- Stiffness proportional type 

- Rayleigh type 

- Caughey type 

 

 Non-proportional damping 

- Energy proportional type 

 

 Viscous damping (Voigt model & Maxwell model) 

 

 Hysteretic damping 

 

 Friction damping 

 

 Internal friction damping (Material damping) 

 External friction damping 

 Sliding friction damping 

 

 Radiation damping    

 

Among the many different ways of expressing damping phenomena above, 

modal damping is most frequently used in numerical analyses of structures. The 

values for modal damping are determined for each modal natural frequency of a 

vibration system. The modal damping can be classified into proportional and 

non-proportional damping. The MIDAS programs provide proportional 

damping, which includes mass proportional, stiffness proportional and Rayleigh 

type damping. 

 

 

In order to calculate the non-proportional damping matrix of a structure, which 

includes materials with different damping properties or artificial damping 

devices, the damping properties are individually evaluated first. And then, its 

damping matrix is obtained. In real structures, however, damping mechanisms 
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are complex, and it is thus impractical to determine the damping matrix in this 

manner for most cases. 

 

Accordingly, proportional damping (also referred to as classical damping) is 

generally used to account for the effects of damping. In order to obtain the 

damping matrix of a structure, the damping properties of the major modes from 

an eigenvalue analysis of the structure are formulated into a proportional 

damping matrix. A diagonal damping matrix can be obtained when the damping 

matrix is multiplied left and right by the corresponding mode vectors. Then the 

modal damping ratios can be further obtained with a simple mathematical 

modification to the diagonal damping matrix. Note that the orthogonal property 

of eigen-vectors with respect to the proportional damping matrix is utilized in 

computing the modal damping ratios. 

 

When non-proportional damping is under consideration, it is not possible to 

obtain modal damping ratios as the eigen-vectors are not orthogonal with respect 

to the non-proportional damping matrix. Based on the mode shapes calculated 

from an eigenvalue analysis, the strain energy concept is applied to obtain the 

modal damping ratios. 

 

In midas Civil, the damping method can be specified in the Response Spectrum 

Load Cases menu for a response spectrum analysis, and in the Time History 

Load Cases menu for a time history analysis. Depending on the type of dynamic 

analysis, possible options to assign the damping method are as follows: 

 

 In response spectrum analysis and in time history analysis using modal 

superposition 

 

 Modal 

 Mass & Stiffness Proportional  

 Mass Proportional Type 

 Stiffness Proportional Type 

 Rayleigh Damping Type 

 Strain Energy Proportional  

  

 In time history analysis using a direct integration method 

 

 Modal 

 Mass & Stiffness Proportional  

 Mass Proportional Type 

 Stiffness Proportional Type 

 Rayleigh Damping Type 

 Strain Energy Proportional  

 Element Mass & Stiffness Proportional  

 Rayleigh Damping Type 
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In addition, the Kelvin model can be implemented by assigning a linear viscous 

damper (damping or effective damping) in the General Link menu. In response 

spectrum and modal superposition analyses, Strain Energy Proportional must be 

selected in the damping method to reflect the modal damping ratios in 

calculation.  In a time history analysis using a direct integration method, Mass & 

Stiffness Proportional or Element Mass & Stiffness Proportional must be 

selected for the damping method such that the damping ratios are directly 

applied in analysis through the element damping matrices. Note that when Strain 

Energy Proportional is selected in the damping method, the modal damping 

ratios are indirectly applied in analysis. 

 

The method of reflecting damping in modal superposition and direct integration 

methods will be explained next. The equation of motion of a structure is 

presented below. 

 
 

( ) ( ) ( ) ( )Mu t Cu t u t p tK                                                                                          (1) 

 
where, 

    M   : Mass Matrix 
C    : Damping Matrix 
K   : Stiffness Matrix 
( )u t , ( )u t , ( )u t   : Nodal displacement, velocity & acceleration 
( )p t   : Dynamic Force 

   
 

In response spectrum analysis and vibration analysis by modal superposition, the 

solutions to the equations of motions of individual modes are superimposed. 

Equation (1) is decomposed into individual modes as expressed in Equation (2) 

using the orthogonality of the modal vectors. Accordingly, an eigenvalue 

analysis must precede. 

 

 

2 ( )
( ) 2 ( ) ( )

T

i

i i i i i T

i i

p t
q t q t q t

M


  

 
 +                                                                        (2) 

 

where, i
    :  i-th mode eigenvector (mode shape) 

 

 

 

 

i
   :  i –th mode damping ratio 
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i
   :  i –th mode natural frequency 

( )
i

q t , ( )
i

q t , ( )
i

q t  : i–th mode generalized displacement, velocity

, acceleration 

 

Regardless of the type of damping method selected for vibration a

nalysis by response spectrum and modal superposition analyses, da

mping is considered by the assigned modal damping ratios, i
 . 

 

Time history analysis by a direct integration method directly solves

 the equation of motion in a matrix form obtained from the dynami

c equilibrium (Equation (1)). This method thus requires a damping 

matrix in formulating the equation of motion. 

 

The following sections describe the methods of formulating the da

mping ratio ( i
 ) and the damping matrix (C) pertaining to each an

alysis method and damping method.  
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Proportional Damping 

 
Mass-proportional damping accounts for the effects of external viscous damping 

such as air resistance, which assumes that the damping matrix is proportional to 

the mass matrix. Stiffness-proportional damping on the other hand can be 

explained as an energy dissipated model. Because the effects of radiation 

damping (effects of emitting vibration energy into the ground) cannot be directly 

expressed, the effects are assumed to be proportional to the stiffness, which may 

lead to an overestimation of damping for high modes. 

 

The general form of a proportional damping matrix is defined by Caughey.  

 
N 1

1 j

j

j 0

C M { a ( M K ) }






       (3) 

where, 

 

j, N: Nodal degrees of freedom of nodes, Nth mode (Mode number)  

 

From Equation (1), 1M K  can be obtained from the free vibration of an 

undamped system as follows: 

 

M{ y } K{ y } 0        (4) 
iax{ y } {u }e        (5) 

 

Equation (5) is assumed and substituted into Equation (4), which becomes, 

 
2( M K ){u } {0 }         (6) 

 
1 2M K    is then obtained from Equation (6). As many number of 2  as the 

number of modes exist, which are expressed as 
2

s
 considering the order of the 

modes. 

 

Substituting 1M K  obtained from Equations (4)-(6) into Equation (3), and 

multiplying 
 

T

su
on the left and 

 su
 on the right, Equation (3) then becomes, 

 

       
N 1 N 1

T T2 j 2 j

s s s j s s s j s s

j 0 j 0

u C u C a u M u a M 
 

 

       
  (7) 

 

 

 

Also, damping constant ( s ) for the s-th mode can be expressed as, 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

142 

s s s sC 2 M   
      (8) 

Damping constant, s  for N number of modes can be calculated in Equations (7) 

and (8). 

      

2 js
s j s

s s s

3 2 N 30
1 s 2 s N 1 s

s

C 1
a

2 M 2

1 a
a a a , s 1 N

2

 
 

  






  


 
             

 



  (9) 

  

Damping constants and matrices for the mass proportional type and stiffness 

proportional type are expressed as follows: 

 

    0
s 0 s s

s

a
, C a M 2 M

2
  


  

   :  Mass proportional type (10) 

    1 s s
s 1

s

a 2
, C a K K

2

 





  

   :  Stiffness proportional type (11) 

 

In the Response Spectrum Load Cases menu or the Time History Load Cases 

menu, Mass & Stiffness Proportional is selected first for the damping method.  

Then, Mass Proportional and Stiffness Proportional can be selected.  The 

detailed selection method will be discussed in the following Rayleigh Damping 

section. 

 

0C a M

Mass Proportional

Natural frequencies s

1 2 3 4

0

2
s

s

a





s

1C a K

Stiffness Proportional

Natural frequencies s

1 2 3 4

1

2

s
s

a 





s

 
(a) Mass Proportional Damping               (b) Stiffness Proportional Damping 

Figure 2.3  Modal damping ratios 
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Rayleigh Damping 
 
Rayleigh damping is a modified version of the stiffness-proportional damping by 

correcting the damping ratios of high modes. As shown in Figure 2.4 (b), the 

damping matrix is formulated by linearly combining the mass-proportional 

damping and stiffness-proportional damping matrices. Given the damping ratios 

and natural frequencies of the i-th and j-th modes, the Rayleigh damping matrix 

is determined by Equations (12), (13), (14) and (15) below. Note that the i-th and 

j-th modes represent two major modes. 

 

0 1C a M a K                                                                                        (12) 

1
  

2

0
s 1 s

s

a
a 



 
   

 
                                                                            (13) 

 

where, 

 
 

i j i j j i

0 2 2

j i

2
a

     

 

    



                                                               (14) 

 
 
j j i i

1 2 2

j i

2
a

   

 

  



                                                                           (15) 

 

1 2 3 4 i j



s

0C a M

0

2
s

s

a



 1C a K

1

2

s
s

a 





Rayleigh Damping

0 1

2 2

s
s

s

a a 





 

0 1C a M a K 
Mass Proportional

Stiffness Proportional

Natural frequencies s Natural frequencies s

s

 

 
Figure 2.4 Relationship between modal damping and frequencies  

 

 
 
 
 

(a) Mass Proportional Damping and 

Stiffness Proportional Damping 

(b) Rayleigh Damping 
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0a
 and 1a

can be assigned in the Response Spectrum Load Cases menu or the 

Time History Load Cases menu in the following manner: 

 

1. Direct Specification 

The values of  0a
 and 1a

are directly defined by the user. 

 

2. Calculate from Modal Damping 

 

Damping ratios for the i-th and j-th modes are defined by the user. Using 

the damping ratios with the natural frequencies or natural periods obtained 

from an eigenvalue analysis, 0a
 and 1a

are then automatically calculated 

in midas Civil. 

 

For example, if the frequencies and damping ratios for the i-th and j-th 

modes are 
1.0if Hz

,
1.25jf Hz

, 
0.05i 

and 
0.05j 

respectively, then 

the values of 0a
 and 1a

are obtained as follows: 

 
 Natural frequency 

1 2

2 2
 6.28, 7.85

1.0 0.8

 
    

 

 

 Calcula t ions  o f  0a  and  1a ,  u s ing  Equa t ions (14 )  and  (15 )
  

2 2

2 6.28 7.85 0.05 7.85-0.05 6.28
0.349

7.85 -6.28
0a

   
 

 

 
2 2

2 0.05 7.85-0.05 6.28
=0.007

7.85 -6.28
1a

 


 

 

 Automatic calculations of 0a  and 1a performed in midas Civil  

 

 

  

Rayleigh damping can be used in a response spectrum analysis and a time 

history analysis by the direct integration or modal superposition method. In the 

Response Spectrum Load Cases menu or the Time History Load Cases menu, 
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Mass & Stiffness Proportional is selected first for the damping method. Then, 

both Mass Proportional and Stiffness Proportional are selected in the damping 

type. The method of considering damping for each analysis type will be 

discussed in the next two sections. 

 
 

Rayleigh Damping in Response Spectrum and Modal 
Superposition Analyses  

  
 

In a response spectrum analysis or the modal superposition method in a vibration 

analysis, the equation of motion for the structure is decomposed into N number 

of equations of motion (N modes defined by the user). The equations are 

individually calculated and the results of all the modes are combined. When the 

Rayleigh damping is used, the 0a
 and 1a

values obtained from the two major 

modes are used in Equation (13) to obtain the damping ratios for all the modes 

being used. 

 

The following explains how midas Civil calculates modal damping ratios, using 

the values of 0a
 and 1a

obtained from the two major modes. 

 

For example, if the first three modes are considered with 0 0.35a 
 and 

1 0.005a 
, the modal damping ratio, s  is computed as follows. Assume 

1 4.59215 
, 2 9.81814 

 and  3 14.57793 
. 

 
 Damping ratio calculations for the first three modes         

1
  

2

0
s 1 s

s

a
a 



 
   

 
   

   

1

1 1
0.35 0.005 4.59215 0.04959

2 4.59215


 
    

 
 

2

1 1
0.35 0.005 9.81814 0.04237

2 9.81814


 
    

 
 

3

1 1
0.35 0.005 14.57793 0.04845

2 14.57793


 
    

 
 

 Damping ratio calculations for the first three modes         
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Exception: if s  > 1 or s < 0, then s is considered as 0.9999 or 0.0 respectively.  

 

 

Rayleigh Damping in Direct Integration Method 

  

The Rayleigh damping in a direct integration method also uses the values of 0a
 

and 1a
 determined by only two major modes, which are incorporated in 

0 1C a M a K 
to compute a damping matrix. With the equation of motion in a 

matrix format, direct integration is executed for each time step. 

 

In a nonlinear time history analysis using the direct integration method, the 

damping effects can be overestimated when the structure undergoes inelastic 

deformations beyond the elastic limit and the initial stiffness, K is maintained in 

0 1C a M a K 
.   

 

midas Civil automatically updates the stiffness of members beyond the yielding 

point extending into the zone of stiffness degradation, which in turn becomes 

reflected in the composition of the damping matrix. The renewal of stiffness is 

applicable only when Mass & Stiffness Proportional or Element Mass & 

Stiffness Proportional is selected for the damping method, both of which 

constitute a damping matrix based on the Rayleigh damping. 

 

In order to execute the analysis, the user must specify the following in the Time 

History Load Cases menu: 

 

1.  Nonlinear is selected for the analysis type. 

2.  Direct integration is selected for the analysis method. 

3. Mass & Stiffness Proportional or Element Mass & Stiffness Proportional is 

selected for the damping method.  

4. “Yes” is selected for the damping matrix update. 

RAYLEIGH DAMPING COEFFICIENT, TIME LOADCASE =   1 

 -------------------------------------------------- 

 MASS COEFFICIENT. :    0.35000 

 STIFFNESS COEFFICIENT. :    0.00500 

 

  MODE     FREQUENCY    DAMPING RATIO 

   NO.     [RAD/SEC]                  

 ------  -------------  ------------- 

     1    4.59215E+00    4.95889E-02 

     2    9.81814E+00    4.23695E-02 

     3    1.45779E+01    4.84493E-02 
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Note that when “No” is selected, the initial stiffness matrix is used for the entire 

time history analysis irrespective of the condition of the structure. 

 
 

Modal Damping Based on Strain Energy 
 
Overview 

 
In real structures, damping properties are different for different materials, and 

sometimes damping devices are locally installed. midas Civil enables the user to 

specify different damping characteristics for different elements by using Element 

Mass & Stiffness Proportional. However, the damping matrices of such 

structures generally are of non-classical damping, and their modes cannot be 

decomposed. Accordingly, modal damping ratios are calculated on the basis of 

the concept of strain energy in order to reflect different damping properties by 

elements in response spectrum analysis and modal superposition in dynamic 

analysis.   

 

The modal damping based on strain energy can be performed in time history 

analysis by the response spectrum, modal superposition and direct integration 

methods. Strain Energy Proportional is selected for the damping method in the 

Response Spectrum Load Cases menu and the Time History Load Cases menu. 

However, when the strain energy based modal damping is considered in time 

history analysis by the direct integration, the damping matrix becomes a full 

matrix, which demands an excessive time for analysis compared to that required 

for modal superposition. 

 

The damping ratio of a single degree of vibration system having viscous 

damping can be defined by a ratio of dissipated energy in a harmonic motion to 

the strain energy of the structure.   

 

 
4

D

S

E

E



                                                                             (16) 

 

 where,  

  ED : Dissipated energy 

  ES : Strain energy 
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Figure 2.5 Dissipated Energy and Strain Energy 

 
In a structure with multi-degrees of freedom, the dynamic behavior of a 

particular mode can be identified by the dynamic behavior of the single degree 

of freedom system of the corresponding natural frequency. For this, two 

assumptions are made to calculate the dissipated energy and strain energy 

pertaining to a particular element. First, the deformation of the structure is 

assumed to be proportional to the mode shapes. The element nodal displacement 

and velocity vectors of the structure in a harmonic motion based only on the i-th 

mode of the corresponding natural frequency can be written as, 

 

 
 

 

, ,

, ,

sin

cos

i n i n i i

i n i i n i i

t

t

 

  

 

 

u φ

u φ
                                                  (17) 

  

where, 

                 
,i n

u  : Nodal displacement of the n-th element due to the i-th mode of 

vibration 

,i n
u  : Nodal velocity of the n-th element due to the i-th mode of 

vibration 

i,n : i-th Mode shape corresponding to the n-th element’s degree of 

freedom 

 i    : Natural frequency of the i-th mode 
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 i     : Phase angle of the i-th mode  

 

 

 

 

Second, the element’s damping is assumed to be viscous damping, which is 

proportional to the element’s stiffness. 

 
2 n

n n

i

h


C K                                                                         (18) 

 

 where, 

  Cn : Damping matrix of the n-th element 

  Kn : Stiffness matrix of the n-th element 

  hn : Damping ratio of the n-th element  

 

The dissipated energy and strain energy can be expressed as below under the 

above assumptions. 

 

 

 

 

, , , ,

, , , ,

, 2

1 1
,

2 2

T T

D i n n i n n i n n i n

T T

S i n n i n i n n i n

E i n h

E i n

  

 

u C u φ K φ

u K u φ K φ
                           (19) 

 

where, 

ED (i, n): Dissipated energy of the n-th element due to the i-th mode of 

vibration 

       ES (i, n): Strain energy of the n-th element due to the i-th mode of 

vibration 

 

The damping ratio of the i-th mode for the entire structure can be calculated by 

summing the energy for all the elements corresponding to the i-th mode.  
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φ K φ

                                   (20) 
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Set-up and Calculation of Modal Damping Based on 
Strain Energy 

 
In order to define the modal damping based on strain energy in midas Civil, the 

elements and boundaries need to be grouped in Group such that each group has 

the same damping properties. Then the Damping Ratios are individually 

specified for the element groups and boundary groups in Strain Energy 

Proportional Damping within Damping Ratio for Specified Elements and 

Boundaries of Group Damping. For those elements and boundaries, which have 

not been grouped, the Damping Ratios are defined in Strain Energy Proportional 

Damping within Default Values for Unspecified Elements and Boundaries. 

 

Using the Damping Ratios of the element and boundary groups defined thus far, 

the individual modal damping ratios are calculated based on the strain energy 

upon the execution of eigenvalue analysis. The results can be then found in 

Modal Damping Ratio of Modal Damping Ratio based on Group Damping. 

When Calculated Only When Used is checked on in Group Damping (shown at 

the bottom of the left figure below), the modal damping will be calculated only 

under the damping condition of Strain Energy Proportional in time history 

analysis. 

 

    
(a) Defining Damping Ratios             (b) Calculation of Damping Ratio for Each Mode based

    for Element and Boundary Groups       on strain Energy 
 

Figure 2.6 Definition of Strain Energy Damping and Modal Damping 

 

 
In response spectrum and modal superposition analyses, the equation of motion 

for the structure is decomposed into a set of modal equations of motion. These 
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modal equations of motion are then solved using the modal damping ratios, s  

obtained on the basis of strain energy.  

 

In a time history analysis with the direct integration method, the damping matrix 

constituting the equation of motion for the entire structure is formulated by using 

the strain energy based modal damping ratios ( s ), natural frequencies (ωi) and 

modal matrices. Formulating the damping matrix for this particular case will be 

discussed separately. 

 

 

Modal Damping 
 

Modal damping ratios can be directly defined by the user. Modal responses are 

then computed based on the defined modal damping ratios. Modal damping can 

be utilized in response spectrum, modal superposition and direct integration 

analyses. However, when modal damping is used in a time history analysis by 

the direct integration method, the damping matrix becomes unsymmetrical, 

which demands an excessive calculation time compared to that required for the 

modal superposition method. 

 

Modal damping can be defined in the Response Spectrum Load Cases menu and 

the Time History Load Cases menu. Modal is selected for the Damping Method, 

and then modal damping ratios can be assigned within Modal Damping 

Overrides. Damping ratios for modes, which have not been assigned, can be 

entered in Damping Ratio for All Modes. 

 

For response spectrum and modal superposition analyses, the equation of motion 

of the structure is decomposed into a set of modal equations of motion.  Each of 

the modal equations of motion is then solved with the corresponding user-

defined modal damping ratio ( s ). 

 

In a time history analysis with the direct integration method, the damping matrix 

constituting the equation of motion for the entire structure is formulated by using 

the pre-defined modal damping ratios ( s ), natural frequencies (ωs) and modal 

matrices. Formulating the damping matrix for this particular case will be 

discussed separately. 
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Rayleigh Damping by Elements 
 

Rayleigh Damping by Elements enables the user to apply different damping 

ratios for different members and/ or boundaries constituting a structure. This 

helps the user effectively model a structure composed of different materials, 

vibration control devices or vibration isolation devices. 

 

When damping is considered individually for each element, the damping matrix 

becomes non-proportional damping, which cannot be decomposed by modes. 

Accordingly, the Rayleigh Damping by Elements can be only applicable to a 

time history analysis using a direct integration method in which damping matrix 

is directly created. Element Mass & Stiffness Proportional needs to be selected 

for the damping method in the Time History Load Cases menu. 

 

In order to reflect different damping properties for different elements in response 

spectrum and modal superposition analyses, damping ratios need to be assigned 

in the Specified Element and Boundaries within the Group Damping menu.  

Modal damping ratios based on the strain energy concept are then calculated 

based on the results of an eigenvalue analysis. 

 

The Rayleigh damping by elements in midas Civil is defined as follows: 

 

1. Group elements and boundaries that will have the same damping properties. 

2. For individual groups of elements and boundaries, 

Group Damping → Damping Ratio for Specified Elements and Boundaries 

→ Element Mass & Stiffness Proportional Damping → Assign values for 

Mass Coefficient (α) and Stiffness Coefficient (β). 

3. For the elements and boundaries, which have not been grouped,  

Group Damping → Default Values for Unspecified Elements and 

Boundaries → Element Mass & Stiffness Proportional Damping → Assign 

values for Mass Coefficient and Stiffness Coefficient.  

 

Using the values of α and β for each element group, the damping matrix for each 

element is computed with C M K   and the equation of motion can be 

obtained. Since the Rayleigh Damping by Elements is based on the Rayleigh 

damping, αn and βn for the member n are calculated in the same manner as the 

Rayleigh Damping. 

 

Currently, midas Civil does not support Mass Coefficient (α), so it will be 

treated as stiffness proportional damping by elements. 
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Formulation of Damping Matrix 
 

In a time history analysis using the direct integration method, the damping 

matrix becomes a full matrix when Modal or Strain Energy Proportional is 

selected for the damping method.  The damping matrix for the entire structure 

can be obtained through the assigned modal damping ratios ( s ), natural 

frequencies (ωi) and modal matrices. 

 

The damping matrix of the entire structure is formulated as below. 

 

2 T

i i

 
 


 
  

C MΦ Φ M

 
 

where, 
    C :  Damping matrix of the entire structure 

M :  Mass matrix of the entire structure 

                                                                   i : Damping ratio of the i-th mode of the entire structure 

 :  Mode shape 

 1 2 .... ....i nf        

nf : number of modes used 
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Consideration of Linear Damping in General Link 
Element 

 
General Link Element is used to model vibration damping devices, vibration 

isolation devices, compression only elements, tension only elements, inelastic 

hinges and foundation springs. It consists of six springs, which connects two 

nodes.  General Link Element can be used to model an additionally installed 

damper by specifying the linear viscous damping. 

 

In case the linear viscous damping of a general link is of the Element Type, it 

can be defined by selecting Linear Dashpot and Spring and Linear Dashpot 

through Damping of Linear Properties. In the case of Force Type, it can be 

defined through Effective Damping of Linear Properties. 

 

The details of the linear viscous damping of a general link element are separately 

addressed in the general link element section. Below explains the method of 

obtaining modal damping ratios considering the linear viscous damping of a 

general link element when modal damping based on strain energy is used. 

 

Damping or Effective Damping of linear viscous damping of a general link 

element is assumed as follows: 
2 eff

eff eff

eff

C K



  

where, 

    effC  : Damping or Effective Damping  

effK  : Stiffness of General Link Element 

eff  :  Damping Ratio of General Link Element 

eff  : Frequency of General Link Element 

 

Based on the above equation, the damping ratio of the i-th mode, which reflects 

the linear viscous damping at the time of calculating the strain energy of a 

general link, can be expressed as below. 
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The modal damping ratios calculated with the above equation are identically 

applied to response spectrum analysis and time history analysis using the modal 

superposition and direct integration methods. 
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Response Spectrum Analysis 

 
The dynamic equilibrium equation for a structure subjected to a ground motion 

used in a response spectrum analysis can be expressed as follows: 

 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )gM u t C u t K u t M w t     

 

where, 

[ ]M  : Mass matrix 

[ ]C  : Damping matrix 

[ ]K  : Stiffness matrix 

( )gw t : Ground acceleration 

and, ( )u t , ( )u t  and ( )u t  are relative displacement, velocity and acceleration 

respectively. 

 

Response spectrum analysis assumes the response of a multi-degree-of-freedom 

(MDOF) system as a combination of multiple single-degree-of-freedom (SDOF) 

systems. A response spectrum defines the peak values of responses corresponding to 

and varying with natural periods (or frequencies) of vibration that have been 

prepared through a numerical integration process. Displacements, velocities and 

accelerations form the basis of a spectrum. Response spectrum analyses are 

generally carried out for seismic designs using the design spectra defined in 

design standards. 

 

To predict the peak design response values, the maximum response for each 

mode is obtained first and then combined by an appropriate method. For seismic 

analysis, the displacement and inertial force corresponding to a particular degree 

of freedom for the m-th mode are expressed as follows: 

 

<Eq. 1> 

xm m xm dmd S  , xm m xm am xF S W   

 

where, 

m  : m-th modal participation factor 

xm : m-th modal vector at location x 

dmS : Normalized spectral displacement for m-th mode period 

amS : Normalized spectral acceleration for m-th mode period 

xW  : Mass at location x 

Refer to “Analysis> 

Response Spectrum 

Analysis Control"  
of On-line Manual. 
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In a given mode, the spectral value corresponding to the calculated natural 

period is searched from the spectral data through linear interpolation. It is 

therefore recommended that spectral data at closer increments of natural periods 

be provided at the locations of curvature changes (refer to Figure 2.7). The range 

of natural periods for spectral data must be sufficiently extended to include the 

maximum and minimum natural periods obtained from the eigenvalue analysis. 

Some building and bridge codes indirectly specify the seismic design spectral 

data by means of Dynamic coefficient, Foundation factor, Zoning factor, 

Importance factor, Ductility factor (or Response modification factor or Seismic 

response factor), etc. midas Civil can generate the design spectrum using these 

seismic parameters. 

 

Response spectrum analyses are allowed in any direction on the Global X-Y 

plane and in the vertical Global Z direction. You may choose an appropriate 

method of modal combination for analysis results such as the Complete 

Quadratic Combination (CQC) method or the Square Root of the Sum of the 

Squares (SRSS) method. 

 

The following describes the methods of modal combination: 

 

SRSS (Square Root of the Sum of the Squares) 

<Eq. 2> 
2 2 2 1/ 2

max 1 2
[ ]

n
R R R R    

 

ABS (Absolute Sum) 

<Eq. 3> 

max 1 2 n
R R R R     

 

CQC (Complete Quadratic Combination) 

<Eq. 4> 

max

1 1

1/ 2
N N

i ij j

i j

R R R
 


 
 
 
   

 

where, 
2 3 / 2

2 2 2 2

8 (1 )

(1 ) 4 (1 )
ij

r r

r r r




  





, 

j

i

r 



 

 

Rmax: Peak response 

Ri : Peak response of i-th mode 

r : Natural frequency ratio of i-th mode to j-th mode 

ξ : Damping ratio 

You may reinstate  

the signs lost during  

the modal combination 

process and apply them 

to the response 

spectrum analysis 

results. For details, 

refer to “Analysis> 

Response Spectrum 

Analysis Control”  

of On-line Manual. 
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In <Eq. 4>, when i = j, then ρij = 1 regardless of the damping ratio. If the 

damping ratio (ξ) becomes zero (0), both CQC and SRSS methods produce 

identical results. 

 

The ABS method produces the largest combination values among the three 

methods. The SRSS method has been widely used in the past, but it tends to 

overestimate or underestimate the combination results in the cases where the 

values of natural frequencies are close to one another. As a result, the use of the 

CQC method is increasing recently as it accounts for probabilistic inter-

relations between the modes.  

 

If we now compare the displacements of each mode for a structure having 3 

DOF with a damping ratio of 0.05, the results from the applications of SRSS and 

CQC are as follows:  

 

Natural frequencies 
 

1
0.46  , 

2
0.52  , 

3
1.42   

 

Maximum modal displacements: Dij (displacement components of i-th 

degree of freedom for j-th mode) 
 

0.036 0.012 0.019

0.012 0.044 0.005

0.049 0.002 0.017

ij
D   



 

 

If SRSS is applied to compute the modal combination for each degree of 

freedom, 
 

 
1/ 2

2 2 2

max 1 2 3
0.042, 0.046, 0.052R R R R       

 

If CQC is applied, 
 

12 21
0.3985    

13 31
0.0061    

23 32
0.0080    

 
2 2 2 1/ 2

max 1 2 3 12 1 2 13 1 3 23 2 3
[ 2 2 2 ]R R R R R R R R R R         

{0.046,0.041,0.053}  
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Comparing the two sets of displacements for each degree of freedom, we note 

that the SRSS method underestimates the magnitude for the first degree of 

freedom but overestimates the value for the second degree of freedom relative to 

those obtained by CQC. Thus, the SRSS method should be used with care when 

natural frequencies are close to one another. 

 

 

 

 

 
Figure 2.7 Response spectrum curve and linear interpolation of spectral data 
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Time History Analysis 

 
The dynamic equilibrium equation for time history analysis is written as 

 

[ ] ( ) [ ] ( ) [ ] ( ) ( )M u t C u t K u t p t    
 
where, 

[ ]M  : Mass matrix 

[ ]C  : Damping matrix 

[ ]K  : Stiffness matrix 

( )p t : Dynamic load 

and, ( )u t , ( )u t  and ( )u t are displacement, velocity and acceleration respectively. 

 

Time history analysis seeks out a solution for the dynamic equilibrium equation 

when a structure is subjected to dynamic loads. It calculates a series of structural 

responses (displacements, member forces, etc.) within a given period of time 

based on the dynamic characteristics of the structure under the applied loads. 

midas Civil uses the Modal Superposition Method for time history analysis. 

 

 

Modal Superposition Method 
 

The displacement of a structure is obtained from a linear superposition of modal 

displacements, which maintain orthogonal characteristics to one another. This 

method premises on the basis of that the damping matrix is composed of a linear 

combination of the mass and stiffness matrices as presented below. 

 

<Eq. 1> 

[ ] [ ] [ ]C M K    

 

<Eq. 2> 

( ) ( ) ( ) ( )T T T TM q t C q t K q t F t        

 

<Eq. 3> 

( ) ( ) ( ) ( )i i i i i i im q t c q t k q t P t        ( 1,2,3,..., )i m  

 

<Eq. 4> 

1

( ) ( )

m

i i

i

u t q t



   

Refer to "Load>Time 

History Analysis Data" 

of On-line Manual. 
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<Eq. 5> 

0
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(0) (0)
( ) [ (0) cos sin ]

1
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t i i i i
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  
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

     




 

 

where, 

<Eq. 6> 

2
1

Di i i
      

,  : Rayleigh coefficients 

i : Damping ratio for i-th mode 

i  : Natural frequency for i-th mode 

i  : i-th mode shape 

qi(t) : Solution for i-th mode SDF equation 

 

When a time history analysis is carried out, the displacement of a structure is 

determined by summing up the product of each mode shape and the solution for 

the corresponding modal equation as expressed in <Eq. 4>. Its accuracy depends 

on the number of modes used. This modal superposition method is very effective 

and, as a result, widely used in linear dynamic analyses for large structures. 

However, this method cannot be applied to nonlinear dynamic analyses or to the 

cases where damping devices are included such that the damping matrix cannot 

be assumed as a linear combination of the mass and stiffness matrices. 

 

The following outlines some precautions for data entries when using the modal 

superposition method: 

 

Total analysis time (or Iteration number) 

 

Time step 
Time step can affect the accuracy of analysis results significantly. The increment 

must be closely related to the periods of higher modes of the structure and the 

period of the applied force. The time step directly influences the integral in 

<Eq. 5>, and as such specifying an improper time step may lead to inaccurate 

results. In general, one-tenth of the highest modal period under consideration is 

reasonable for the time step. In addition, the time step should be smaller than that 

of the applied load. 

 

10

p
T

t   

 

where, Tp = the highest modal period being considered 
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Modal damping ratios (or Rayleigh coefficients) 

Values for determining the energy dissipation (damping) properties of a 

structure, which relate to either the total structure or individual modes. 

 

Dynamic loads 

Dynamic loads are directly applied to nodes or foundation of a structure, 

which are expressed as a function of time. The change of loadings must be 

well represented in the forcing function. A loading at an unspecified time is 

linearly interpolated. 

 

Figure 2.8 shows an idealized system to illustrate the motion of a SDOF 

structural system. The equilibrium equation of motion subjected to forces 

exerting on a SDOF system is as follows: 

 

<Eq. 7> 

I D Ef (t) + f (t) + f (t) = f(t)  

 

If (t)  is an inertia force, which represents a resistance to the change of velocity 

of a structure. The inertia force acts in the opposite direction to the acceleration, 

and its magnitude is ( )mu t . Ef (t)  is an elastic force by which the structure 

restores its configuration to the original state when the structure undergoes a 

deformation. This force acts in the opposite direction to the displacement, and its 

magnitude is )(tku . Df (t)  is a damping force, which is a fictitious internal force 

dissipating kinetic energy and thereby decreasing the amplitude of a motion. The 

damping force may come in a form of internal frictions. It acts in the opposite 

direction to the velocity, and its magnitude is ( )cu t . 

 

 

 

(a) Idealized model (b) State of equilibrium 

 
Figure 2.8 Motion of SDOF System 

(elastic force) 

(damping force) (external 

force) 

(inertia force) 
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The above forces are now summarized as 

 

<Eq. 8> 

( )
I

f mu t  

( )
D

f cu t  

( )
E

f ku t  

 

where, m, c and k represent mass, damping coefficient and elastic coefficient 

respectively. From the force equilibrium shown in Figure 2.8 (b), we can obtain 

the equation of motion for a SDOF structural system. 

 

<Eq. 9> 

( ) ( ) ( ) ( )mu t cu t k u f t    

 

<Eq. 9> becomes the equation of damped free vibration by letting f(t)=0, and it 

becomes the equation of undamped free vibration if the condition of c=0 is 

additionally imposed on the damped free vibration. If f(t) is assigned as a seismic 

loading (or displacements, velocities, accelerations, etc.) with varying time, the 

equation then represents a forced vibration analysis problem. The solution can be 

found by using either Modal Superposition Method or Direction Integration 

Method. 
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Linear Buckling Analysis 

 
Linear buckling analysis is used to determine Critical Load Factors and the 

corresponding Buckling Mode Shapes of a structure, which is composed of truss, 

beam or plate elements. The static equilibrium equation of a structure at a 

deformed state is expressed as  

 

<Eq. 1> 

 [ ]{ } [ ]{ } { }GK U K U P   

 

where, 

[ ]K  : Elastic stiffness matrix 

[ ]
G

K : Geometric stiffness matrix 

{ }U  : Total displacement of the structure 

{ }P  : Applied load 

 

The geometric stiffness matrix of a structure can be obtained by summing up the 

geometric stiffness matrix of each element. The geometric stiffness matrix in this 

case represents a change in stiffness at a deformed state and is directly related to 

the applied loads. For instance, a compressive force on a member tends to reduce 

the stiffness, and conversely a tensile force tends to increase the stiffness.  

 

[ ] [ ]G GK k  

 

[ ] [ ]G Gk F k  

 

where, 

[ ]Gk : Standard geometric stiffness matrix of an element 

F : Member force (axial force for truss and beam elements) 

Refer to  

“Analysis>Buckling 

Analysis Control"  

of On-line Manual. 
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Standard geometric stiffness matrix of a truss element 
 

 

 

 

Standard geometric stiffness matrix of a beam element 
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Geometric stiffness matrix of a plate element 

0 0

[ ] [ ] 0 0 [ ]

0 0

T
G

v

s

k G s  G dV

s

 
 


 
  

  

 

[ ]G : Matrix of strain-displacement relationship 

 

[ ]

xx xy zx

xy yy yz

zx yz zz

S

  

  

  

 
 

  
 
  

: Element stress matrix 

 

The geometric stiffness matrix can be expressed in terms of the product of the 

load factor and the geometric stiffness matrix of a structure being subjected to 

input loads. It is written as 

 

<Eq. 2> 

[ ] [ ]G GK K  

 

where, 

 : Load scale factor 

[ ]GK : Geometric stiffness matrix of a structure being subjected to external    

 loads 

 

<Eq. 3> 

[ ]{ } { }GK K U P   

[ ] [ ]eq GK K K   

 

In order for a structure to become unstable, the above equilibrium equation must 

have a singularity. That is, buckling occurs when the equivalent stiffness matrix 

becomes zero. 

 

[ ] 0eqK      ( )cr  : Unstable equilibrium state 

[ ] 0eqK     ( )cr   : Unstable state 

[ ] 0eqK     ( )cr   : Stable state 

 

Therefore, the buckling analysis problem in <Eq. 3> can be narrowed to an 

eigenvalue analysis problem. 
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<Eq. 4> 

[ ] [ ] 0i GK K   

where, i : eigenvalue (critical load factor) 

 

This can be now solved by the same method used in “Eigenvalue Analysis”. 

 

From the eigenvalue analysis, eigenvalues and mode shapes are obtained, which 

correspond to critical load factors and buckling shapes respectively. A critical 

load is obtained by multiplying the initial load by the critical load factor. 

The significance of the critical load and buckling mode shape is that the 

structure buckles in the shape of the buckling mode when the critical load 

exerts on the structure. For instance, if the critical load factor of 5 is obtained 

from the buckling analysis of a structure subjected to an initial load in the 

magnitude of 10, this structure would buckle under the load in the magnitude of 

50. Note that the buckling analysis has a practical limit since buckling by and 

large occurs in the state of geometric or material nonlinerity with large 

displacements. 

 

As stated earlier, the linear buckling analysis feature in midas Civil is applicable 

for truss, beam and plate elements. The analysis is carried out in two steps 

according to the flow chart shown in Figure 2.9. 

 

1. Linear static analysis is performed under the user-defined loading condition. The 

geometric stiffness matrices corresponding to individual members are then 

formulated on the basis of the resulting member forces or stresses. 

 

2. The eigenvalue problem is solved using the geometric and elastic stiffness 

matrices obtained in Step 1.  

 

The eigenvalues and mode shapes obtained from the above process now become 

the critical load factors and buckling shapes respectively. 
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Figure 2.9 Buckling analysis schematics in midas Civil 

Input structural analysis model 

Formulate the global stiffness matrix and 
assemble the  load  matrix for buckling analysis 

Perform linear static analysis and formulate 
geometric stiffness matrix of each element 

Formulate the global geometric stiffness matrix 

Perform eigenvalue analysis using the global 
stiffness matrix and the geometric stiffness matrix 
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Nonlinear Analysis 

 

Overview of Nonlinear Analysis  
 

When a structure is analyzed for linear elastic behaviors, the analysis is carried 

out on the premise that a proportional relationship exists between loads and 

displacements. This assumes a linear material stress-strain relationship and small 

geometric displacements. 

 

The assumption of linear behaviors is valid in most structures. However, 

nonlinear analysis is necessary when stresses are excessive, or large 

displacements exist in the structure. Construction stage analyses for suspension 

and cable stayed bridges are some of large displacement structure examples. 

Nonlinear analysis can be classified into 3 main categories. 

 

First, material nonlinear behaviors are encountered when relatively big loadings 

are applied to a structure thereby resulting in high stresses in the range of 

nonlinear stress-strain relationship. The relationship, which is typically 

represented as in Figure 2.10, widely varies with loading methods and material 

properties. 

 

 

 

 
Figure 2.10 Stress-strain relationship used for material nonlinearity 
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Second, a geometric nonlinear analysis is carried out when a structure undergoes 

large displacements and the change of its geometric shape renders a nonlinear 

displacement-strain relationship. The geometric nonlinearity may exist even in 

the state of linear material behaviors. Cable structures such as suspension 

bridges are analyzed for geometric nonlinearity. A geometric nonlinear analysis 

must be carried out if a structure exhibits significant change of its shape under 

applied loads such that the resulting large displacements change the coordinates 

of the structure or additional loads like moments are induced (See Figure 2.11). 

 

 

 

 
(a) Change in structural stiffness due to large displacement 

 

 

 

 
(b) Additional load induced due to displacement 

 
Figure 2.11 Structural systems requiring geometric nonlinear analyses 
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Third, boundary nonlinearity of a load-displacement relationship can occur in a 

structure where boundary conditions change with its structural deformations due 

to external loads. An example of boundary nonlinearity would be compression-

only boundary conditions of a structure in contact with soil foundation. 

 

midas Civil contains such nonlinear analysis functions as boundary nonlinear 

analysis using nonlinear elements (compression/tension-only elements) and large 

displacement geometric nonlinear analysis.  

 

 

 

Large Displacement Nonlinear Analysis 
 

Small displacement (
ij
 ) used in linear analysis is given below under the 

assumption of small rotation. 

 

 , ,

1

2
ij i j j i

u u    

 

“u” represents displacement and “,” represents the differentiation of the first 

subscript coordinate. When a large displacement occurs as shown in Figure 2.12, 

the structural deformation cannot be expressed with small strain any longer. 

Large displacement can be divided into rotational and non-rotational components 

as per the equations below. F, R and U represent deformation tensor, rotation 

tensor and stretch tensor respectively. U determines the deformation of a real 

structure. 

 

, ( )F RU f U   

 

Accurate strain can be calculated from the above equations after eliminating the 

rotational component. When the magnitude of rotation is large, accurate 

deformation-displacement relationship cannot be found initially. That is, 

geometric nonlinearity is introduced because the deformations change according 

to the displacements calculated from the linear analysis. 
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Figure 2.12 Geometric nonlinearity due to large displacement 

 

 

 

midas Civil uses the Co-rotational method for geometric nonlinear analysis, and 

its basic concept and analysis algorithm are as follows: This method considers 

geometric nonlinearity by using the strain in the Co-rotational coordinate system, 

which moves with the rotation of the element being deformed. The deformation-

displacement relationship in the Co-rotational coordinate system can be 

expressed as a matrix equation ˆˆ ˆBu , and the deformation-displacement 

relationship matrix used in linear analysis can be applied. That is, the element’s 

stability and converging ability of linear analysis are maintained even geometric 

nonlinearity concepts are introduced. Maintaining such superior characteristics is 

most advantageous for nonlinear analysis. 

 

Displacement û in the Co-rotational coordinate system is calculated by the 

equation,  1 2 3 1 2 3
늿 늿, , , , ,u e e e e e e , and the infinitesimal displacement ˆδu  is 

“linearized” and then expressed as ˆδu=Tδu . In the case of a linear elastic 

problem in the Co-rotational coordinate system, the internal element force ˆ intp  is 

obtained from 

 
int

0
ˆˆ T

dv
B dVp    
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where, σ̂  is the stress expressed in the Co-rotational coordinate system, and the 

increment of the above equation becomes 

 

uKKp ˆ)ˆ(ˆ int    

 

In the above equation, ˆ
σ

K  is the geometric stiffness matrix or initial stress stiffness 

matrix. The following nonlinear equilibrium equation can be obtained using the 

equilibrium relationship between the internal and external forces, int- 0extp p  . 

 
extpuKK  ˆ)ˆˆ(   

 

Newton-Raphson and Arc-length methods are used for finding solutions to the 

nonlinear equilibrium equations. The Newton-Raphson method, which is a load 

control method, is used for typical analyses. For those problems such as Snap-

through or Snap-back, the Arc-length method is used. 

 

midas Civil permits the use of truss, beam and plate elements for geometric 

nonlinear analyses. If other types of elements are used, the stiffness is 

considered, but not the geometric nonlinearity. 

 

 

 Newton-Raphson iteration method 
 

In the geometric nonlinear analysis of a structure being subjected to external 

loads, the geometric stiffness is expressed as a function of the displacement, 

which is then affected by the geometric stiffness again. The process requires 

repetitive analyses. The Newton-Raphson method is a widely used method, 

which calculates the displacement in equilibrium with the given external load as 

shown in Figure 2.13. The stiffness matrix is rearranged in each cycle of 

repetitive calculations to satisfy equilibrium with the load given in the 

equilibrium equation of load-displacement. A solution within the allowable 

tolerance is obtained using the stiffness matrices through the process of iteration. 

 

puKpuKK T  ,)(   

, ( )TK K K K f u     

mmmmT RuuuK  ))(( 11  
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Figure 2.13 Newton-Rapson Method 

 

 

 

Expanding the left side of the above equation by Taylor series, 

( ( ) ( ) ( )
n n n

y x h y x y x h   ), we obtain 

 

-1 -1 -1 -1

-1

( )( ) ( )m mT Tm m m m

m

dR
K u u u K u u u

du
     

 

The relationship of -1

-1

( )T m

m

dR
K u

du
  and 

-1- R

m mR R R  are substituted into the 

above equation and rearranged to obtain the following:  

 

-1 -1( ) - R

T m m m mK u u R R R    (
RR : Residual Force) 

 

The process of analysis is illustrated in the above diagram. Once mΔu  is 

calculated, the displacement is adjusted by m m-1 mu =u +Δu . To proceed to the next 

iterative step, a new tangential stiffness  T mK u  and the unbalanced load 

m+1 mR -R  are calculated, and the adjusted displacement m+1u  is obtained. 

 

The iterative process is continued until the magnitude of an increment in 

displacement, energy or load in a step is within the convergence limit. 

Load 

Displacement 
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 Arc-length iteration method 
 

In a general iterative process, the calculated value for a displacement increment 

can be excessive if the load-displacement curve is close to horizontal. If the load 

increment remains constant, the resulting displacement can be quite excessive. 

The Arc-length method resolves such problems, and Snap-through behaviors can 

be analyzed similar to using the displacement control method. Also, the Arc-

length method can analyze even the Snap-back behaviors, which the displacement 

control method cannot analyze (See Figure 2.14 (b)). 

 

 

 
(a) Snap-through (b) Snap-back 

 

 

 
(c) Concept of Arc-Length Method 

 
Figure 2.14 Arc-Length Method 

Load Load 

Displacement Displacement 

Load R 

Displacement U 
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In the Arc-length method, the norm of incremental displacements is restrained to 

a pre-defined value. The magnitude of the increment is applied while remaining 

unchanged in the iterative process, but it is not fixed at the starting time of 

increments. The following process is observed in order to determine the 

magnitude of the increment: (See Figure 2.14 (c)) We define the external force 

vector at the beginning of increments as 
m-1

R  and the increment of external force 

vector as 
i f . The unit load f  is multiplied by the load coefficient 

i  and 

changed at every step of iteration. 

 

-1( ) R
i iT iK u u R    

      
-1

-1 -1int int-i i iT i mu K u f f u f u     

 

The solutions to the above equations can be divided into the following two parts, 

and the incremental displacement can be found as below. 

 

      
-1

-1 -1int int-I
i iT i mu K u f u f u  ,  

-1

-1
II
i T iu K u f   

I II
i i i iu u u     

 

midas Civil finds the load coefficient i  by using the spherical path whose 

constraint condition equation is as follows: 

 
2T

i iu u l     

 

l represents the displacement length to be restrained, and the equation 

i i-1 iu = u +δu   is substituted into the above equation to calculate the load 

coefficient i  as below. 

 
2

1 2 3 0a a a     

2
2 2 1 3

1

4

2
i

a a a a

a

  
   

 

   

     

1

2 -1

2
3 -1 -1 -1

2 2

2 -

T
II II
i i

T TI II II
i i ii

TT TI I I
i i ii i i

a u u

a u u u u

a u u u u u u l

 

  

  



  

      
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Generally, two solutions exist from the above equations. In the case of complex 

number solutions, linear equivalent solutions of the spherical path method are 

used. In order to determine which one of the real number solutions is to be used, 

the angle   formed by the incremental displacement vectors of the preceding 

and present steps of iteration is calculated and used as per the equation below. 

 

 -1

-1

cos

T

ii

ii

u u

u u










 

 

If the solutions contain one negative and one positive values, the positive value 

is selected. If both solutions produce acute angles, the solution close to the linear 

solution 3 2-i a a   is used. 

 

 

 

P-Delta Analysis 
 

The P-Delta analysis option in midas Civil is a type of Geometric nonlinearity, 

which accounts for secondary structural behavior when axial and transverse 

loads are simultaneously applied to beam or wall elements. The P-Delta effect is 

more profound in tall building structures where high vertical axial forces act upon the 

laterally displaced structures caused by high lateral forces.  

 

Virtually all design codes such as ACI 318 and AISC-LRFD specify that the P-

Delta effect be included in structural analyses to account for more realistic 

member forces. 

 

The P-Delta analysis feature in midas Civil is founded on the concept of the 

numerical analysis method adopted for Buckling analysis. Linear static analysis 

is performed first for a given loading condition and then a new geometric 

stiffness matrix is formulated based on the member forces or stresses obtained 

from the first analysis. The geometric stiffness matrix is thus repeatedly 

modified and used to perform subsequent static analyses until the given 

convergence conditions are satisfied. 

 

As shown in Figure 2.15, static loading conditions are also required to consider 

the P-Delta effect for dynamic analyses. 

 

Refer to “Analysis> 

P-Delta Analysis 

Control" of On-line 

Manual. 
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The concept of the P-Delta analysis used in midas Civil is shown below. 

 

 
Figure 2.15 Flow chart for P-Delta analysis in midas Civil  
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When a lateral load acts upon a column member thereby resulting in moments 

and shear forces in the member, an additional tension force reduces the member 

forces whereas an additional compression force increases the member forces. 

Accordingly, tension forces acting on column members subjected to lateral loads 

increase the stiffness pertaining to lateral behaviors while compression forces 

have an opposite effect on the column members. 

 

 

 

 
(a) Column subjected to tension and lateral forces simultaneously 

 

 

 

 

 
(b) Column subjected to compression and lateral forces simultaneously 

 
Figure 2.16 Column behaviors due to P-Delta effects 

Before deflection After deflection 
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If the P-Delta effect is ignored, the column moment due to the lateral load alone 

varies from M=0 at the top to M=VL at the base. The additional tension and 

compression forces produce negative and positive P-Delta moments respectively. 

The effects are tantamount to an increase or decrease in the lateral stiffness of 

the column member depending on whether or not the additional axial force is 

tension or compression.  

 

Accordingly, the lateral displacement can be expressed as a function of lateral 

and axial forces.  

 

/V K  , 0 GK K K   

 

KO here represents the intrinsic lateral stiffness of the column and KG represents 

the effect of change (increase/decrease) in stiffness due to axial forces. 

Formulation of geometric stiffness matrices for truss, beam and plate elements 

can be found in Buckling Analysis. 

 

The P-Delta analysis can be summarized as follows: 

 

1st step analysis 

Δ1 = V/KO  

 

2nd step analysis 

Δ2 = f(P,Δ1), Δ = Δ1 + Δ2  

 

3rd step analysis 

Δ3 = f(P,Δ2), Δ = Δ1 + Δ2 + Δ3  

 

4th step analysis 

Δ4 = f(P,Δ3), Δ = Δ1 + Δ2 + Δ3 + Δ4  

. 

. 

. 

nth step analysis 

Δn = f(P,Δn-1), Δ = Δ1 + Δ2 + Δ3 + ... + Δn  

 

After obtaining Δ1 from the 1st step analysis, the geometric stiffness matrix due 

to the axial force is found, which is then added to the initial stiffness matrix to 

form a new stiffness matrix. This new stiffness matrix is now used to calculate 

Δ2 reflecting P-Delta effects, and the convergence conditions are checked.  The 

convergence conditions are defined in “P-Delta Analysis Control”, which are 

Maximum Number of Iteration and Displacement Tolerance. The above steps are 

repeated until the convergence requirements are satisfied. 
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Note that the P-Delta analysis feature in midas Civil produces very accurate 

results when lateral displacements are relatively small (within the elastic limit). 

 

The static equilibrium equation for P-Delta analysis used in midas Civil can be 

expressed as 

 

[ ]{ } [ ]{ } { }GK u K u P   

 

where, 

[ ]K  : Stiffness Matrix of pre-deformed model 

[ ]GK : Geometric stiffness matrix resulting from member forces and stresses at 

 each step of iteration 

{ }P  : Static load vector 

{ }u  : Displacement vector 

 

P-Delta analysis in midas Civil premises on the following: 

 

Geometric stiffness matrices to consider P-Delta effects can be formulated 

only for truss, beam and wall elements. 
 

Lateral deflections (bending and shear deformations) of beam elements 

are considered only for “Large-Stress Effect” due to axial forces. 
 

P-Delta analysis is valid within the elastic limit. 

 

In general, it is recommended that P-Delta analysis be carried out at the final stage of 

structural design since it is a time-consuming process in terms of computational time. 
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Nonlinear Analysis with Nonlinear Elements 
 

Nonlinear analysis in midas Civil is applied to a static analysis of a linear 

structure in which some nonlinear elements are included. The nonlinear elements 

that can be used in such a case include tension-only truss element, hook element, 

cable element, compression-only truss element, gap element and tension/compression-

only of Elastic Link. The static equilibrium equation of a structural system using 

such nonlinear elements can be written as  

 

<Eq. 1> 

[ ]{ } { }NK K U P   

 
K  : Stiffness of linear structure 

NK : Stiffness of nonlinear elements 

 

The equilibrium equation containing the nonlinear stiffness, KN, in <Eq. 1> can 

be solved by the following two methods:  

 

The first method seeks the solution to the equation by modifying the loading 

term without changing the stiffness term. The analysis is carried out by the 

following procedure: 

 

If we apply the stiffness of nonlinear elements at the linear state to both sides of 

the equation, and move the stiffness of nonlinear elements to the loading term, 

<Eq. 2> can be derived. 

 

<Eq. 2> 

[ ]{ } { } [ ]{ }L L NK K U P K K U     

 

LK : Stiffness of nonlinear elements at the linear state  

 

In <Eq. 2>, the linear stiffness of the structure and the stiffness of nonlinear 

elements at the linear state always remain unchanged. Therefore, static analysis 

of a structure containing nonlinear elements can be accomplished by repeatedly 

modifying the loading term on the right side of the equation without having to 

repeatedly recompose the global stiffness or decompose the matrix. Not only 

does this method readily perform nonlinear analysis, but also reducing analysis 

time is an advantage without the reformation process of stiffness matrices where 

multiple loading cases exist. 

 

The second method seeks the solution to the equation by iteratively re-assembling 

the stiffness matrix of the structure without varying the loading term following the 

procedure below. 

Refer to "Include 

Inactive Elements 

of Analysis>Main 

Control Data"  

of On-line Manual. 
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A static analysis is performed by initially assuming the stiffness of nonlinear 

elements in <Eq. 1>. Using the results of the first static analysis, the stiffness of 

nonlinear elements is obtained, which is then added to the stiffness of the linear 

structure to form the global stiffness. The new stiffness is then applied to carry 

out another round of static analysis, and this procedure is repeated until the 

solution is found. This method renders separate analyses for different loading 

conditions as the stiffness matrices for nonlinear elements vary with the loading 

conditions. 

 

The above two methods result in different levels of convergence depending on 

the types of structures. The first method is generally effective in analyzing a 

structure that contains tension-only bracings, which are quite often encountered 

in building structures. However, the second method can be effective for 

analyzing a structure with soil boundary conditions containing compression-only 

elements.  
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Stiffness of Nonlinear Elements (
N

K ) 

 
midas Civil calculates the stiffness of nonlinear elements by using displacements and 

member forces resulting from the analysis. The nonlinear stiffness of Truss, Hook and 

Gap types is determined on the basis of displacements at both ends and the hook or gap 

distance. The nonlinear stiffness of cable elements is obtained from the resulting 

tension forces. 

 

The nonlinear stiffness of tension/compression–only elements such as Truss, 

Hook and Gap types can be determined by <Eq. 3>. Whereas, stiffness changes 

for tension-only cable elements need to be considered according to the changes 

of tension forces in the members. The nonlinear stiffness is calculated by 

determining the effective stiffness, which is expressed in <Eq. 4>.  

 

<Eq. 3> 

( )
N

K f D d   

 
D : Initial distance (Hook or Gap distance) 

d : Change in member length resulting from the analysis 

 

<Eq. 4> 

2 2

3

1

1/ 1/
1

12

eff

sag elastic

EA
K

K K W L EA
L

T

 



 
 
 

 

3

2 3

12
sag

T
K

W L
  , 

elastic

EA
K

L
  

 

W  : Weight density per unit length of cable 

T  : Tension force in cable 

 

Since the nonlinear elements used in midas Civil do not reflect the large-

displacement effect and material nonlinearity, some limitations for applications 

are noted below. 

 

1. Material nonlinearity is not considered. 
 

2. Nonlinearity for large displacements is not considered. 
 

3. Instability due to loadings may occur in a structure, which is solely 

composed of nonlinear elements. The use of nodes composed of only 

nonlinear elements are not allowed. 
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4. Element stiffness changes with changing displacements and member forces 

due to applied loadings. Therefore, linear superposition of the results from 

individual loading cases are prohibited.  
 

5. In the case of a dynamic analysis for a structure, which includes nonlinear 

elements, the stiffness at the linear state is utilized.  

 

The analysis procedure for using nonlinear elements is as follows: 

 

1. Using the linear stiffness of the structure and the stiffness of nonlinear 

elements at the linear state, formulate the global stiffness matrix and load 

vector. 
 

2. Using the global stiffness matrix and load vector, perform a static analysis 

to obtain displacements and member forces. 
 

3. Re-formulate the global stiffness matrix and load vector.  
 

4. If the method 1 is used, where the analysis is performed without changing 

the stiffness term while varying the loading term, the nonlinear stiffness is 

computed by using the displacements and member forces obtained in Step 2, 

which is then used to reformulate the loading term. If the method 2 is used, 

where the analysis is performed with changing the stiffness term, the 

stiffness of nonlinear elements is computed first by using the resulting 

displacements and member forces, which is then used to determine the 

global stiffness matrix. 
 

5. Repeat steps 2 and 3 until the convergence requirements are satisfied.  
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Pushover Analysis (Nonlinear Static Analysis) 
 

 Overview 
 

Pushover analysis is one of the performance–based design methods, recently attracting 

practicing structural engineers engaged in the field of seismic design. The objective of a 

performance-based design is achieved after the user and the designer collectively select 

a target performance for the structure in question. The engineer carries out the 

conventional design and subsequently performs a pushover (elasto-plastic) analysis to 

evaluate if the selected performance objective has been met. 

 

When equivalent static design loads are computed in a typical seismic design, 

the method illustrated in Figure 2.17 is generally used. The engineer applies 

appropriate response force modification factors (R) to compute the design loads 

and ensures that the structure is capable of resisting the design loads. The 

significance of using the R factors here is that the structure exhibits inelastic 

behaviors during an earthquake. That is, the structure is inflicted with material 

damage due to the earthquake loads. Depending on the energy absorption 

capability of the structure, the response force modification factors vary. The 

design method described herein is relative to loads and as such it is termed as 

“force-based design method”. However, a simple comparison of the strengths 

cannot predict the true behavior of a structure. As a result, it is highly likely that 

a structure may be designed without a clear knowledge of the structural 

performance characteristics. 

 

 

 
Figure 2.17 Calculation of earthquake loads as per force-based design method 
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Where a performance-based design method is adopted, the project owner and the 

engineer pre-select a target performance. This reflects the intent of the project 

team to allow an appropriate level of structural damage or select the level of 

energy absorption capability due to anticipated seismic loads in a given 

circumstance. In order to achieve the objective, we need to be able to predict the 

deformation performance of the structure to the point of ultimate failure. The 

eigenvalues change with the level of energy absorption capability. If the 

performance criteria are evaluated on the basis of the structure’s displacements, 

it is termed as “displacement-based design method”. 

 

Where pushover analysis is carried out as one of the means of evaluating the 

structure’s deformability, a load-displacement spectrum is created as illustrated 

in Figure 2.18. A demand spectrum is also constructed depending on the level of 

energy absorption capability of the structure. The intersection (performance 

point) of the two curves is thus obtained. If the point is within the range of the 

target performance, the acceptance criteria are considered to have been satisfied. 

That is, the performance point is evaluated against the acceptance criteria or vice 

versa. 

 

 

 
Figure 2.18 Seismic design by performance-based design method 
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 Analysis Method 
 

The project owner and the engineer determine the target performance of a 

structure at least after having met the requirements of the building and design 

codes. Several analysis methods exist in assessing the structural performance, 

namely, Linear Static, Linear Dynamic, Nonlinear Static and Nonlinear Dynamic 

procedures. midas Civil employs pushover analysis, which is a nonlinear static 

analysis method, generally used for the structures whose dynamic characteristics 

of higher modes are not predominant. Pushover analysis can incorporate material 

and geometric nonlinearity. midas Civil adopts and applies simplified elements 

to reflect the nonlinear material characteristics, which are based on “Element 

model” (Stress-Resultant stress approach) using the load-displacement 

relationship of the member sections. 

 

Pushover analysis creates a capacity spectrum expressed in terms of a lateral 

load-displacement relationship by incrementally increasing static forces to the 

point of the ultimate performance. The capacity spectrum is then compared with the 

demand spectrum, which is expressed in the form of a response spectrum to seismic 

loads, to examine if the structure is capable of achieving the target performance. 

Accordingly, pushover analysis is often referred to as the second stage analysis, which 

is subsequently carried out after the initial structural analysis and design. 

 

Pushover analysis can provide the following advantages: 

 

It allows us to evaluate overall structural behaviors and performance 

characteristics. 
 

It enables us to investigate the sequential formation of plastic hinges in the 

individual structural elements constituting the entire structure. 
 

When a structure is to be strengthened through a rehabilitation process, it 

allows us to selectively reinforce only the required members, thereby 

maximizing the cost efficiency. 

 

Evaluating analysis results premises on whether or not the target performance 

has been achieved. midas Civil follows the proposed procedures outlined in 

FEMA-273 and ATC-40 to help the engineer evaluate the target performance of 

the structure as well as individual members. 
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 Element Types used in midas Civil 
 

The types of elements that midas Civil uses for pushover analysis are 2D beam 

element, 3D beam-column element, 3D wall element and truss element. The 

characteristics of each element are noted in the subsequent sections. 

 

2D Beam element & 3D Beam-column element 
Nodal forces and displacements can identically represent the beam element 

and beam-column element as shown in Figure 2.19. 

 

 

 
Figure 2.19 Nodal forces and Displacements for 2D Beam element  

and 3D Beam-column element 

 

 

 

The loads and displacements for a beam or beam-column element are 

expressed as below in order to reflect the effects of biaxial moments in a 3-

dimensional space. The expressions can be applied to the beam element 

provided that there is no presence of axial force. 

 

   1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , ,
T

x x y y z z x x y y z zP F M F M F M F M F M F M        (1-a) 

   1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , ,
T

x x y y z z x z y y z zu u v u v                                  (1-b) 
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Truss element 

Truss element uses a spring capable of resisting only compression and 

tension forces acting in the axial (x-dir.) direction. 

 

 

 
Figure 2.20 Nodal forces for Truss element 
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 Characteristics of Nonlinear Spring 
 

The springs shown in each element do not represent actual spring elements. They are 

simply noted to convey the concept of the analysis method. This means that plastic 

deformations occur and are concentrated at the locations of the springs. The nonlinear 

spring retains the following characteristics: 

 

Beam element relates Load-Displacement, Axial force-1 Directional 

moment-Rotational angle, Shear force-Shear deformation and 

Torsion-Torsional deformation. 
 

Column and Wall elements relate Load-Displacement, Axial force-2 

Directional moments-Rotational angles, Shear force-Shear 

deformation and Torsion-Torsional deformation. 
 

Truss element relates Load-Displacement. 

 

The element deformations are expressed in terms of equations by the following 

methods: 

 

Bending deformation spring 
The sum of the following three terms define the spring deformation angle at 

a node. 

 
e p sθ=θ +θ +θ               (2) 

 

where, e , p  and s  represent the elastic bending deformation angle, 

plastic bending deformation angle and the bending deformation angle due 

to shear respectively. The plastic deformations due to bending moments are 

assumed to occur and concentrate within the shaded L zones as shown in 

Figure 2.21. Accordingly, the flexibility matrix including the plastic 

deformations and shear deformations can be formulated by the following 

expressions: 
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Figure 2.21 Distribution of assumed flexural stiffness 

 

 

 

The load-displacement relationship for springs can be arranged as the 

flexibility matrix equations (4) & (5) below. 

 

    f M                      (4) 
 

where, 
e p s

f f f f                                (5) 

 

The Equation (5) separately presents the flexibility matrices for elastic 

bending deformation angle, plastic bending deformation angle and the 

bending deformation angle due to shear as illustrated in Figure 2.22. 

 

 

 

 
Figure 2.22 Moment-Deformation angle Relationship 
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Axial deformation, Torsional deformation and Shear deformation springs 

midas Civil assumes that axial force, torsional moment and shear force 

remain constant in a member and that the plastic hinges form at the center 

of the member for pushover analysis. Thus, their force-deformation 

relationships can be also expressed similar to the case of bending 

deformation. 

 

Biaxial bending spring 
In the case of an element subjected to axial force and biaxial moments, the 

yield moments for the given axial force are separately obtained and then the 

relationship below is applied. 

 

1.0
nynx

nox noy

MM

M M


  

     
   

           (6) 

 

The Equation (6) applies to both reinforced concrete and structural steel 

members. 

 

 

 Analysis method 
 

Structural stiffness changes as a result of formation of hinges. Lateral 

displacement increases with reduced stiffness. The loading incrementally 

increases and the load-displacement relationship is established upon completion 

of a series of analyses. midas Civil uses the following analysis methods: 

 

Use of Secant stiffness matrix 

Displacement control method 

P-Delta and Large deformation effects considered 

 

The use of the Secant stiffness matrix and Displacement control method provides 

the advantage of obtaining stable analysis values near the maximum load. 

 

 

 Applied loads 
 

Applied loads must be of lateral forces that can reflect the inertia forces at each 

floor. Accordingly, it is recommended that at least 2 different types of lateral 

forces be applied for pushover analysis. midas Civil permits 3 types of lateral 

load distribution patterns. They are the Static load case pattern, Mode shape 

pattern distribution and Uniform acceleration proportional to the masses at each 

floor. If a static load case pattern is used for load distribution, the user becomes 

able to distribute the load in any specific pattern as required. 
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 Capacity spectrum and Demand spectrum 
 

In order to evaluate whether or not the target performance is satisfied, the 

capacity spectrum and demand spectrum are used. Pushover analysis produces 

the load-displacement relationship whereas the response spectrum is expressed 

in terms of accelerations vs. periods. To compare the two spectrums, we need to 

transform them into the ADRS format, which stands for Acceleration-

Displacement Response Spectrum. 

 

 

 
Figure 2.23 Transformation of Load-Displacement 

into Acceleration-Displacement Spectrum 

 

 

 

 
Figure 2.24 Transformation of Acceleration-Period  

into Acceleration-Displacement Spectrum 
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The load-displacement relationship is transformed into the acceleration–displacement 

relationship as illustrated in Figure 2.24 by the following expressions: 

 

1

V
A

M
               (7) 

1 1

U
D





              (8) 

 
where, the subscript, 1 represents the first mode. 
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And the response spectrum is transformed as shown in Figure 2.24, using 

Equation (11). 

 
2

24

nT
D A


             (11) 

 

 

 
Figure 2.25 Calculation of Demand Spectrum 
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 Calculation of Performance Point 
 

The intersection of the capacity and demand spectrums represents the performance 

point. When a structure is subjected to a big force such as an earthquake, it undergoes a 

process of plastic deformations. The magnitude of dissipated energy depends on the 

extent of plastic deformation or ductility. The magnitude of the demand spectrum, in 

turn, reduces relative to the increase in magnitude of energy dissipation. The 

performance point is thus obtained through a process of repeated calculations as 

illustrated in Figure 2.25. midas Civil adopts the Capacity Spectrum Method A (See 

Figure 2.26) as defined by ATC-40 to find the performance point. 

 

 

 
Figure 2.26 Capacity Spectrum Method A of ATC-40 
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 Evaluation of Performance 
 

Once the displacement of the total structure is confirmed to exist within the 

range of the target performance, the process of evaluating the performance of 

individual members takes place. midas Civil adopts a process similar to the 

recommended procedures described in FEMA-273 and ATC-40 to evaluate the 

member performance. These reports classify the target performance into three 

stages as shown in Figure 2.27. Where the structural performance falls short of 

the target performance, the engineer improves the strength or ductility of the 

relevant members. 

 

 

 

 

IO = Immediate Occupancy Level 

LS = Life Safety Level 

CP = Collapse Prevention Level 

 
Figure 2.27 Performance evaluation of members 
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 Procedure for Pushover analysis 
 

1. Complete static analysis and member design 

In order to review the inherent capacity of a structure against seismic 

loads, first complete the static analysis followed by member design. 

 

2. Input control data for Pushover analysis 

Recall the Design > Pushover Analysis Control dialog box, and specify 

the maximum number of increment steps, maximum number of (internal) 

iterations per each increment step and convergence tolerance. 

 

3. Input Pushover Load Case 

Recall the Design > Pushover Load Cases dialog box, and specify the 

loading at the initial state prior to the pushover analysis and the Pushover 

load cases. The initial load may be the dead load on the structure. The 

pushover load condition may be in the form of Static Load Case, Uniform 

Acceleration and Mode Shape. Each load pattern can be combined with 

the initial load. 

 

4. Define Hinge Data 

Recall the Design > Define Hinge Data Type dialog box, and define the 

Hinge Data representing the material nonlinearity. You may select the 

Hinge Types provided in midas Civil or the User Type. 

 

5. Assign Hinge Data to the members 

Recall the Design > Assign Pushover Hinges dialog box, and assign the 

defined Hinge Data to individual members. In general, moment hinges for 

beams, axial/moment hinges for columns and walls and axial hinges for 

bracings are assigned. 

 

6. Perform Pushover analysis 

Carry out the pushover analysis in Design > Perform Pushover Analysis. 

 

7. Check the analysis results 

Upon completing the analysis successfully, click Design > Pushover Curve to 

produce the resulting pushover curves. The performance levels of the structure 

are checked against various design spectrums. We can also check the deformed 

shapes at each step and the process of hinge formation. The Animate function 

may be used to animate the process of hinge formation. 
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Boundary Nonlinear Time History Analysis 

 

 Overview 
 

Boundary nonlinear time history analysis, being one of nonlinear time history 

analyses, can be applied to a structure, which has limited nonlinearity. The 

nonlinearity of the structure is modeled through General Link of Force Type, and the 

remainder of the structure is modeled linear elastically. Out of convenience, the 

former is referred to as a nonlinear system, and the latter is referred to as a linear 

system. Boundary nonlinear time history analysis is analyzed by converting the 

member forces of the nonlinear system into loads acting in the linear system. Because 

a linear system is analyzed through modal superposition, this approach has an 

advantage of fast analysis speed compared to the method of direct integration, which 

solves equilibrium equations for the entire structure at every time step. The equation 

of motion for a structure, which contains General Link elements of Force Type, is as 

follows:  

 

   ( ) ( ) ( ) ( ) ( ) - ( )
S N P N L N

Mu t Cu t K K u t B p t B f t f t      

where,  

     M  : Mass matrix 

     C   : Damping matrix 

     S
K

 : Elastic stiffness without General Link elements of Force Type 

     N
K

 : Effective stiffness of General Link elements of Force Type 

     
P

B , 
N

B   : Transformation matrices 

     ( )u t , ( )u t , ( )u t  : Nodal displacement, velocity & acceleration 

     ( )p t  : Dynamic load 

    
( )

L
f t

 : Internal forces due to the effective stiffness of nonlinear components 

contained in General Link elements of Force Type 

       
( )

N
f t

 : True internal forces of nonlinear components contained in General Link 

elements of Force Type 

 

The term fL (t) on the right hand side is cancelled by the nodal forces produced 

by KN on the left hand side, which correspond to the nonlinear components of 
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General Link of Force Type. Only the true internal forces of the nonlinear 

components fN (t) will affect the dynamic behavior. The reason for using the 

effective stiffness matrix KN is that the stiffness matrix of KS alone can become 

unstable depending on the connection locations of the general link elements of 

the force type. 

 

Mode shapes and natural frequencies on the basis of mass and stiffness 

matrices can be calculated through Eigenvalue Analysis or Ritz Vector 

Analysis. The damping is considered by modal damping ratios.  

 
Using the orthogonality of the modes, the above equation is transformed into 

the equation of Modal Coordinates as follows:  

2 ( ) ( ) ( )
( ) 2 ( ) ( )

T T T

i P i N L i N N

i i i i i T T T

i i i i i i

B p t B f t B f t
q t q t q t

M M M

  
  

     
   +  

where, 

 
i
  :  Mode shape vector of the i-th mode 

 
i
  :  Damping ratio of the i-th mode 

 
i

  :  Natural frequency of the i-th mode 

( )
i

q t , ( )
i

q t , ( )
i

q t   : Generalized displacement, velocity & acceleration at the 

i-th mode 

 

The fN (t) and fL (t) on the right hand side are determined by the true 

deformations and the rates of changes in deformations in the local coordinate 

systems of the corresponding general link elements of the force type. However, 

the true deformations of the elements contain the components of all the modes 

without being specific to any particular modes. The above modal coordinate 

kinetic equation thus cannot be said to be independent by individual modes. In 

order to fully take the advantage of modal analysis, we assume fN (t) and fL (t) at 

each analysis time step so that it becomes a kinetic equation in the independent 

modal coordinate system. 

 

First, using the analysis results of the immediately preceding step, the 

generalized modal displacement and velocity of the present step are assumed; 

based on these, fN (t) and fL (t) for the present step are calculated. Again from 

these, the generalized modal displacement and velocity of the present stage are 

calculated. And the deformations and the rates of changes in deformations of 

the general link elements of the force type are calculated through a combination 

process. The entire calculation process is repeated until the following 

convergence errors fall within the permitted tolerance. 
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where, 
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,
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( Δ )

T

i N

T
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j
j N

M i

B f n t

M
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

 
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  t : Magnitude of time step 

  n  : Time step 

  j  : Repeated calculation step 

  i  : Mode number 

 

The above process is repeated for each analysis time step. The user directly 

specifies the maximum number of repetitions and the convergence tolerance in 

Time History Load Cases. If convergence is not reached, the program 

automatically subdivides the analysis time interval Δt and begins reanalyzing. 

 

The nonlinear properties of the general link elements of the force type are 

expressed in terms of differential equations. Solutions to the numerical analysis 

of the differential equations are required to calculate and correct the internal 

forces corresponding to nonlinear components in the process of each repetition. 

MIDAS programs use the Runge-Kutta Fehlberg numerical analysis method, 

which is widely used for that purpose and known to provide analysis speed and 

accuracy. 

   

 Cautions for Eigenvalue Analysis 
 

The boundary nonlinear time history analysis in MIDAS is based on modal 

analysis, and as such a sufficient number of modes are required to represent the 

structural response. A sufficient number of modes are especially required to 

represent the deformations of general link elements of the force type.  
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A representative example may be the case of the seismic response analysis of a 

friction pendulum system isolator. In this type of isolator, the internal force of 

the element’s axial direction component is an important factor for determining 

the behavior of the shear direction components. Accordingly, unlike other 

typical seismic response analyses, the vertical modes play an important role. 

The number of modes must be sufficiently enough so that the sum of the modal 

masses in the vertical direction is close to the total mass. 

   

When the eigenvalue analysis is used to achieve such objective, a very large 

number of modes may be required. This may lead to a very long analysis time. 

If Ritz Vector Analysis is used, the mode shapes and natural frequencies can be 

found reflecting the distribution of dynamic loads with respect to each degree 

of freedom. This allows us to include the effects of higher modes with a 

relatively small number of modes. 

   

For example, in the case of a friction pendulum system isolator, we can select 

the ground acceleration in the Z-direction and static Load Case Names related 

to the self weight of the structure in the input dialog box of Ritz Vector 

analysis. Natural frequencies and mode shapes related mainly to the vertical 

movement can be obtained. In general, the Ritz Vector analysis is known to 

provide more accurate analysis results with a fewer number of modes compared 

to Eigenvalue analysis. 

 

 

 Combining Static and Dynamic Loads 
 

Unlike linear time history analysis, the principle of superposition cannot be 

applied to nonlinear time history analysis. The analysis results of static loads 

and dynamic loads cannot be simply combined as if they could occur 

concurrently. In order to account for the effects of static and dynamic loads 

simultaneously, the static loads must be applied in the form of dynamic loads, 

and then a boundary nonlinear time history analysis is carried out. midas Civil 

provides the Time Varying Static Loads functionality, which enables us to 

input static loads in the form of dynamic loads. 

 

First, we enter the Ramp function of Normal Data Type in Dynamic Forcing 

Function. Next, we can enter the Static Load Cases pertaining to the vertical 

direction and previously defined Function Names in Time Varying Static Load. 

The shape of the Ramp function should be such that the converted static 

loading is completely loaded and the resulting vibration is sufficiently 

dampened before the Arrival Time of the ground acceleration. In order to 

reduce the time that takes to dampen the vibration resulting from the loading of 

the converted static loads, we may select the option of the 99% initial damping 
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ratio in Time History Load Case. In addition, the static loads are maintained 

while the ground acceleration is acting. 

 

 Effective Stiffness 
 

In a boundary nonlinear time history analysis, the entire structure is divided 

into linear and nonlinear systems. Nonlinear member forces stemming from the 

nonlinear system are converted into external dynamic loads acting on the linear 

system for the analysis. At this point, the linear system alone may become 

unstable depending on the locations of the general link elements of the force 

type comprising the nonlinear system. Therefore, modal analysis is carried out 

after stabilizing the structure using the effective stiffness.  

 
If the structure becomes unstable after removing the general link elements of 

the force type, appropriate effective stiffness need to be entered to induce the 

natural frequencies and mode shapes, which closely represent the true nonlinear 

behavior. The appropriate effective stiffness in this case is generally greater 

than 0, and a smaller than or equal to the value of the initial stiffness of 

nonlinear properties is used. The initial stiffness corresponds to the dynamic 

properties of different element types that will be covered in the latter section; 

namely, kb for Viscoelastic Damper, k for Gap, Hook and Hysteretic System, 

and ky & kz for Lead Rubber Bearing Isolator and Friction Pendulum System. 

The initial stiffness is entered as effective stiffness to carry out linear static 

analysis or linear dynamic analysis and obtain the response prior to enacting 

nonlinear behavior. In order to approximate linear dynamic analysis, 

appropriate Secant Stiffness is entered as effective stiffness on the basis of the 

anticipated maximum deformation. This is an attempt to closely resemble the 

behavior of nonlinear link elements in a nonlinear analysis.  

   
If the analysis results do not converge, we may adjust the effective stiffness for 

convergence. 

   

 Dynamic Properties of Nonlinear Link Elements of Force Type 
 

MIDAS provides 6 nonlinear boundary elements for boundary nonlinear time 

history analysis: Viscoelastic Damper, Gap, Hook, Hysteretic System, Lead 

Rubber Bearing Isolator and Friction Pendulum System Isolator. Their dynamic 

properties are outlined below. 
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(e) Shear Spring for Friction Pendulum System Isolator 

Figure 2.28 Conceptual diagrams of nonlinear springs for General Link Elements of 

Force Type  

 

Visco-elastic Damper 

 
Viscoelastic Damper simultaneously retains viscosity, which induces a 

force proportional to the speed of deformation; and elasticity, which 

induces a force proportional to deformation. The device increases the 

damping capability of the structure and thereby reduces the dynamic 

response due to seismic, wind, etc. The purpose of using the device is to 

improve structural safety and serviceability. 

 

The representative mathematical models for viscoelastic damper are 

Maxwell model, which connects a linear spring and a viscosity damper in 

series; and Kelvin model, which connects both running parallel to each 

other. midas Civil permits modeling the stiffness of the link element using 

the viscosity damper and the springs of the two models through entering 

appropriate variables. 

 

The concept of the viscoelastic damper is illustrated in Figure 2.28 (a). It 

takes the form of the Kelvin model of a linear spring and a viscosity 

damper connected in parallel in addition to a bracing with a linear stiffness 

connecting two nodes. If a connecting member is not present, or if the 

stiffness of the connecting member is substantially greater than that of the 

damping device, the connecting member may be defined as a rigid body.  

 

The force-deformation relationship of the element is as follows: 
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 
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d d d d b b
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f k d c sign d k d
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  

 
 

 where,  

 dk
 : Stiffness of viscoelastic damper 

 dc
 : Damping coefficient of viscoelastic damper 

 bk
 : Stiffness of connecting member 

s         : Exponent defining the nonlinear viscosity damping property 

of the viscoelastic damper 

 d  : Deformation of element between two nodes 

 dd
 : Deformation of viscoelastic damper 

 bd
 : Deformation of connecting member 

 0v
 : Reference deformation velocity 

 

From the above equations, we can model linear viscosity damping linearly 

proportional to the rate of change in deformation as well as nonlinear 

viscosity damping exponentially proportional to the rate of change in 

deformation. 

 

If we wish to model viscoelastic damper with the Maxwell model, we 

simply enter 0 for kd and specify the stiffness kb for the connecting 

member only. 

   

 Gap 

 
Similar to other boundary elements, Gap consists of 6 components. The 

deformations of the node N2 relative to the node N1 for all 6 degrees of 

freedom in the element coordinate system can be represented. If the 

absolute values of the negative relative deformations become greater than 

the initial distances, the stiffness of the corresponding components will be 

activated. The component in the axial direction only may be used to 

represent the compression-only element, which is used to model contact 

problems. 

 
All the 6 components are independent from one another and retain the 

following force-deformation relationship: 
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   if <0

0              otherwise

k d o d o
f

 



  

where, 

 k  : Stiffness 

 o  : Initial gap 

 d  : Deformation 

 

 Hook 

 
Similar to other boundary elements, Hook consists of 6 components. The 

deformations of the node N2 relative to the node N1 for all 6 degrees of 

freedom in the element coordinate system can be represented. If the 

absolute values of the positive relative deformations become greater than 

the initial distances, the stiffness of the corresponding springs will be 

activated. The component in the axial direction only may be used to 

represent the tension-only element, which is used to model such 

components as wind bracings, hook elements, etc. 

 

All the 6 components are independent from one another and retain the 

following force-deformation relationship: 

 

( )   if 0

0              otherwise

k d o d o
f

  



  

where, 

 k  : Stiffness 

 o  : Initial gap 

 d  : Deformation 

 

 

 

 Hysteretic System 

 
Hysteretic system consists of 6 independent components having the 

properties of Uniaxial Plasticity. The system is used to model Energy 
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Dissipation Device through hysteretic behavior. Classically, Metallic Yield 

Damper can be modeled, which is used to protect the primary structure by 

plastically deforming ahead of adjacent members. The metallic yield damper 

is relatively stiffer than the primary structure but has lower yield strength.  

 
The force-deformation relationship of Hysteretic System by components is 

as follows: 

   

(1 )
y

f r k d r F z      
 

 

where,  

 k  : Initial stiffness 

 y
F

 : Yield strength 

 r  : Post-yield stiffness reduction 

 d  : Deformation between two nodes 

 z  : Internal variable for hysteretic behavior 

 

z is an internal hysteretic variable, whose absolute value ranges from 0 to 1. 

The dynamic behavior of the variable z was proposed by Wen (1976) and 

defined by the following differential equation:  

  

  1 sgn
s

y

k
z z dz d

F
    

 
  

 where, 

  ,   : Parameters determining the shape of hysteretic curve 

 s  : Parameter determining the magnitude of yield strength 

transition region 

 d  : Rate of change in deformation between two nodes 

 

α and β are the parameters determining the post-yield behavior. α+β>0 

signifies Softening System, and α+β<0 signifies Hardening System. The 

energy dissipation due to hysteretic behavior increases with the increase in 

the closed area confined by the hysteretic curve. In the case of Softening 

System, it increases with the decrease in the value of (β-α). The change of 
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hysteretic behavior due to the variation of α and β is illustrated in Figure 

2.29. 

 

s is an exponent determining the sharpness of the hysteretic curve in the 

transition region between elastic deformation and plastic deformation, i.e. 

in the region of yield strength. The larger the value, the more distinct the 

point of yield strength becomes and the closer it is to the ideal Bi-linear 

Elasto-plastic System. The change of the transition region due to s is 

illustrated in Figure 2.30. 
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(a) α = 0.9,  β = 0.1                          (b) α = 0.1,  β = 0.9 
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(c) α = 0.5,  β = -0.5                        (d) α = 0.25,  β = -0.75 

 

            Figure 2.29 Force-Deformation relationship due to hysteretic behavior (r = 0, k = Fy = s = 1.0)  
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  Figure 2.30 Transition region between elastic and plastic deformations (Yield region)  

 

 Lead Rubber Bearing type Isolator 

 
Lead Rubber Bearing type Isolator reduces the propagation of ground 

acceleration and thereby protects the structure from the ground motion. The 

isolators are placed between the girders and piers of bridge structures and 

between the foundations and upper structures of building structures. The lead 

rubber bearing type isolator of low post-yield stiffness separates the dominant 

natural frequencies of the structure from the main frequency components of 

the ground motion. The isolator dissipates the vibration energy within the 

device through the hysteretic behavior. 

 
This type of isolator retains the properties of coupled Biaxial Plasticity for the 

2 shear components and the properties of independent linear elastic springs 

for the remaining 4 components. 

   
The coupled Force–Deformation relationship for the shear components of a 

lead rubber bearing type isolator is noted below. 

   

,

,

(1 )

(1 )

y y y y y y y y

z z z z z y z z

f r k d r F z

f r k d r F z

   

   
 

 

where, 
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y
k ,  

z
k : Initial stiffness of shear components in the ECS y and z 

directions  

,y y
F , 

,y z
F : Yield strength of shear components in the ECS y and z 

directions 

y
r , 

z
r  : Stiffness reduction of shear components after yielding in 

the ECS y and z directions 

y
d , 

z
d   : Deformation of shear components between two nodes in 

the ECS y and z directions 

y
z , 

z
z  : Internal variables for hysteretic behaviors of shear 

components in the ECS y and z directions 

 

Each of zy and zz is an internal hysteretic variable. The SRSS of both values 

ranges from 0 to 1. The dynamic behavior of the variable z was based on the 

biaxial plasticity model proposed by Park, Wen, and Ang (1986), which was 

expanded from the Wen’s uniaxial plasticity model (1976). They are defined 

by the following differential equation: 

     

     

2

,

2

,

1 sgn  sgn

sgn   1 sgn

y

y
y y y y y y z z z z z

y yy

zz
y z y y y y z z z z z

z

y z

k
d

z d z z z d z Fz

kz z z d z z d z d
F

   

   

 
                          

   

where, 

y
 , 

y
 , 

z
 , 

z
 : Parameters related to the shapes of hysteretic 

curves of shear components in the ECS y and z directions 

y
d , 

z
d : Rates of changes in deformations of shear components in 

the ECS y and z directions 

  

If only one nonlinear shear component exists, the above model becomes 

identical to the hysteretic system with s=2 in which case the roles of all the 

variables and parameters also become identical. 

 

 

 Friction Pendulum System type Isolator 
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Friction Pendulum System type Isolator is used for the same purpose of using 

Lead Rubber Bearing type Isolator. Its mechanism of protecting the structure 

from ground motion through energy dissipation by hysteretic behavior and 

moving the natural frequencies is identical. The difference is that the friction 

pendulum system incurs recovery forces through the pendulum curvature 

radii of the slipping surfaces. By adjusting the radii, we can move the natural 

frequencies of the total structure to the desired values. Also, energy 

dissipation due to hysteretic behavior is accomplished through the 

phenomenon of surface slippage. 

   
This type of isolator retains the properties of coupled Biaxial Plasticity for the 

2 shear components, the nonlinear property of the Gap behavior for the axial 

component and the properties of independent linear elastic springs for the 

remaining 3 rotational components.    

   
The equation of Force-Deformation relationship of the axial component of 

the friction pendulum system type isolator is identical to that of Gap with the 

initial gap of 0. 

   

0

0

x x x

x

k d if d
f P

otherwise


 





 

where, 

  P  : Axial force acting on the friction pendulum type isolator 

  
x

k  : Linear stiffness 

 
x

d  : Deformation 

 

The Force–Deformation relationship for the two shear components for a 

friction pendulum system type isolator is noted below. 

y y y y

y

z z z z

z

P
f d P

R

P
f d P

R

z

z





 

 

 

where,  

 P  : Axial force acting on the friction pendulum type isolator 

 
y

R , zR  : Friction surface curvature radii of shear components in the 

ECS y and z directions 
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y
 , 

z
  : Friction surface friction coefficients of shear components 

in the ECS y and z directions 

y
d , 

z
d  : Deformation between two nodes of shear components in 

the ECS y and z directions 

y
z , 

z
z  : Internal variables for hysteretic behaviors of shear 

components in the ECS y and z directions  

   

The friction coefficients of the friction surfaces μy and μz are dependent on 

the velocities of the two shear deformations. They are determined by the 

equations proposed by Constantinou, Mokha and Reinhorn (1990). 

  

  

 

 

 

Where, 

 

  

  

 

,fast y
 , 

,fast z
  : Friction coefficients for fast deformation 

velocities in the ECS y and z directions 

,slow y
 , 

,slow z
  : Friction coefficients for slow deformation 

velocities in the ECS y and z directions 

y
r , 

z
r  : Rates of changes in friction coefficients in the ECS y and 

z directions 

y
d , 

z
d  : Rates of changes in deformations of shear components in 

the ECS y and z directions 

 

Each of zy and zz is an internal hysteretic variable. The SRSS of both values 

ranges from 0 to 1. The dynamic behavior of the variable z was based on the 

biaxial plasticity model proposed by Park, Wen, and Ang (1986), which was 
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expanded from the Wen’s uniaxial plasticity model (1976). They are defined 

by the following differential equation: 

     

     
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                           

 

 

where, 

y
k , 

z
k  : Initial stiffness of shear components prior to sliding in the 

ECS y and z directions (stiffness of link element) 

y
 , 

y
 , 

z
 , 

z
  : Parameters related to the shapes of hysteretic 

curves of shear components in the ECS y and z directions 

y
d , 

z
d  : Rates of changes in deformations of shear components 

between two nodes in the ECS y and z directions 

 

The above model retains the identical form as the lead rubber bearing type 

isolator except for the fact that the values corresponding to the yield strengths 

are expressed by the products of the absolute value of the axial force and the 

friction coefficients. If only one nonlinear shear component exists, the above 

model becomes identical to the uniaxial property with s=2. 
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Inelastic Time History Analysis 

 

  Overview 
 

Inelastic time history analysis is dynamic analysis, which considers material 

nonlinearity of a structure. Considering the efficiency of the analysis, nonlinear 

elements are used to represent important parts of the structure, and the 

remainder is assumed to behave elastically.     

 

Nonlinear elements are largely classified into Element Type and Force Type. 

The Element Type directly considers nonlinear properties by changing the 

element stiffness. The Force Type indirectly considers nonlinear properties by 

replacing the nodal member forces with loads without changing the element 

stiffness. MIDAS programs use the Newton-Raphson iteration method for 

nonlinear elements of the Element Type to arrive at convergence. For nonlinear 

elements of the Force Type, convergence is induced through repeatedly 

changing the loads. The two types of nonlinear elements are classified as the 

Table 2.1. First, beam and general link elements assigned with inelastic hinge 

properties are classified into the Element Type. Among the general link 

elements, visco-elastic damper, gap, hook, hysteretic system, lead rubber 

bearing and friction pendulum system are classified as the Force Type 

nonlinear elements.  

 

 

Element Type Type of Nonlinearity 

Beam + Inelastic Hinge Element 

General 

Link 

Spring + Inelastic Hinge Element 

Visco-elastic Damper Force 

Gap Force 

Hook Force 

Hysteretic System Force 

Lead Rubber Bearing Force 

Friction Pendulum System Force 

 

Table 2.1  Classification of nonlinear elements 
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The equation of motion or dynamic equilibrium equation for a structure, which 

contains inelastic elements, can be formulated as below. 

  

 S E FMu Cu K u f f p      

where, 

  M  : Mass matrix 

  C  : Damping matrix 

  Ks  : Global stiffness matrix for elastic elements only 

, ,u u u    : Displacement, velocity and acceleration responses related to 

nodes 

  p        : Dynamic loads related to nodes 

  fE  :  Nodal forces of Element Type nonlinear elements 

  fF  :  Nodal forces of Force Type nonlinear elements 

          

 

Direct integration must be used for inelastic time history analysis of a structure, 

which contains nonlinear elements of the Element Type. If a structure contains 

nonlinear elements of the Force Type only, much faster analysis can be 

performed through modal superposition.   From this point on, inelastic time 

history analysis by direct integration is explained.   

 

The MIDAS programs use the Newmark method for the method of direct 

integration. Iterative analysis by the Newton-Raphson method is carried out in 

each time step in the process of obtaining the displacement increment until the 

unbalanced force between the member force and external force is diminished. 

The unbalanced force is resulted from the change of stiffness in nonlinear 

elements of the Element Type and the change of member forces in nonlinear 

elements of the Force Type. The equilibrium equation considered in each 

iteration step for obtaining response at the time (t+Δt) is as follows:  

 

 eff effK u p   
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1
effK M C K
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 ( )eff E F Sp p t t f f K u Mu Cu        

 where, 

  Keff : Effective stiffness matrix 

 K : Global tangent stiffness matrix for elastic & inelastic elements 

  δu : Incremental displacement vector at each iteration step                        

  peff : Effective load vector at each iteration step                        

  β, γ : Parameters related to Newmark method 

  t, Δt : Time and time increment 

 

The above iterative process constantly updates the internal forces, fE and fF, of 

inelastic elements through state determination. The nodal response becomes 

updated using the displacement increment vector obtained in each iterative 

analysis step.  

 

 ( ) ( )u t t u t t u     

 ( ) ( )u t t u t t u
t





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
 

 
2

1
( ) ( )u t t u t t u

t



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
 

 

The norm by which convergence of iterative analysis is assessed may be 

displacement, load and energy. One or more of the three can be used to assess 

the convergence. If no conversion is achieved until the maximum iteration 

number specified by the user is reached, the time increment, Δt, is 

automatically divided by 2 and the model is reanalyzed. Each norm is defined 

as follows: 
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 where, 

  εD : Displacement norm 

  εF : Load norm 

  εE : Energy norm 

 peff,n  : Effective dynamic load vector at n-th iterative calculation 

step 

δun  : Displacement increment vector at n-th iterative 

calculation step 

Δun     : Accumulated displacement increment vector through n times 

of iterative    calculations  

 

Unlike elastic time history analysis, inelastic time history analysis can not be 

carried out using the principle of superposition. For example, analysis results 

from static loads and earthquake loads can not be simply combined to represent 

the results of those loads acting simultaneously. Instead, such (combined) loads 

are applied as individual load cases and the loading sequence or the continuity 

of the load cases can be assigned for analysis.  

 

  Line search 
 

midas provides the line search function to improve the performance of the basic 

iterative solutions explained above. The fundamental concept of line search is 

the introduction of a scalar value  during the process of adding the calculated 

incremental solution 1i u to the accumulated incremental solution for improved 

accuracy. In this case, the accumulated incremental solution is calculated as 

follows: 

 

1 1i i i   u u u  

 

Assuming that the calculated 1iu  above satisfies the equilibrium state and uses 

the principal of stationary total potential energy, the line search problem results 

in finding the   at which the derivative of the total potential energy for   is '0'. 

 

1( ) ( ) 0T

is    u g  
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Assuming linear change for the energy derivative ( )s   about  , the   that 

satisfies equation above is calculated as follows: 
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Here, the slopes at which   is '0' or '1' can be expressed as follows: 
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Because the assumptions made for the line search algorithm are not accurately 

satisfied for the real case, the ( )s   calculated from above equation is generally 

not '0'. In midas the processes outlined above are repeated until the 
( ) / ( 0)js s   value is below the user-specified value. 

 

 

  Nonlinear static analysis 
 

Once the effects of mass and damping are excluded from the nonlinear time 

history analysis, nonlinear static analysis can be performed. Nonlinear static 

analysis can be used to create initial conditions based on gravity loads for the 

subsequent nonlinear time history analysis (for lateral loads) or to perform 

pushover analysis. In creating the initial conditions of the gravity loads, 
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performing nonlinear static analysis can reflect the nonlinear behavior, which 

may take place in the process. Accordingly, continuity or sequence of applying 

loads can be maintained to assess the state of nonlinear elements. Pushover 

analysis is a simple method by which the ultimate strength and the limit state 

can be effectively investigated after yielding.   Especially, this has become a 

representative analysis method for Performance-Based Seismic Design, PBSD, 

which has been extensively researched and applied in practice for earthquake 

engineering and seismic design. This analysis is mainly appropriate for 

structures in which higher modes are not predominant and which are not 

influenced by dynamic characteristics.  

 

The method used in nonlinear static analysis is based on the Newton-Raphson 

method, and it supports the methods of Load control or Displacement control. It 

is also possible to continually analyze for load cases, which have different 

control methods. In the load control, the static loads applied by the user are 

divided into a number of loading steps and loaded. In the displacement control, 

the user sets a target displacement, which the structure can undergo, and 

increases the loads until the structure reaches the target displacement. The 

target displacement can be largely set to Global Control 과 Master Node 

Control. The Global Control is a method by which loading is increased until the 

maximum displacement of the structure satisfies the target displacement 

defined by the user. The displacement has no relation to the direction of the 

loading. The Master Node Control is a method by which loading is increased 

until the target displacement at a specific node in a specific direction defined by 

the user is satisfied. The target displacement in performance based seismic 

design is generally set by considering the location of a node at which the 

maximum displacement can possibly occur and its direction. The number of 

loading steps in the load control or the displacement control is determined by 

dividing the end time by the time increment.   

 

The loading is applied through Time Varying Static Load in which the user 

specifies a dummy time function, but it is not used in real analysis. In the case 

of load control, the load factors linearly increase from 0 to 1 in the process of 

real analysis. In the case of displacement control, the load factors 

corresponding to the displacement increments are automatically calculated. The 

load factors used in a nonlinear static analysis can be saved and reproduced.  

   

  Inelastic hinge properties 
 

Inelastic hinge properties are a collection of nonlinear behavior characteristics 

for a beam element or general link elements, which are defined for each of 6 

components. The nonlinear behavior characteristics are defined by special 

rules, which are referred to as hysteresis models. The property of each 

component can be defined by an independent uni-axial hinge hysteresis model 
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or a multi-axial hinge hysteresis model, which reflects multi-component 

properties. Inelastic hinge properties are classified into lumped type, distributed 

type and spring type. Among these different types, the lumped and distributed 

types are used for beam elements, and the spring type is used for general link 

elements.  

 

  Inelastic beam element 
 

Inelastic beam element is a beam element, which is assigned inelastic hinge 

properties. The inelastic beam element is limited to having a prismatic section 

whose hinge properties are identical for the single beam element. The stiffness 

of the inelastic beam element is formalized by the flexibility method. The shape 

function on which the existing stiffness method is based may differ from the 

true deformed shape in inelastic analysis. Whereas, the element section force 

distribution on which the flexibility method is based coincides with the true 

distribution, which results in much higher accuracy. It has been known that the 

use of the flexibility method allows us to accurately model with a much less 

number of elements and as a result, the analysis speed can be much faster.  

M M
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Zone
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                          (a) Lumped type                                                    (b) Distributed type 

Figure 2.31 Inelastic beam element 

 

Lumped type hinge 

 
The lumped type hinge is defined by a force-displacement relationship for 

the axial component and a moment-rotational angle relationship at the ends 

for the flexural components. The formulation is represented by inserting 

inelastic translational and rotational springs of non-dimensional 0 lengths, 

which can deform plastically, into the beam element. The remaining parts 

other than the lumped type inelastic hinges are modeled as an elastic beam. 

The locations for inserting the inelastic springs for axial and flexural 

deformation components are assigned to the middle and both ends of the 

beam element respectively.  
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The stiffness matrix of the beam element, which has been assigned lumped 

type hinges, is calculated by the inverse matrix of the flexibility matrix. The 

flexibility matrix of the total element is formulated by adding the flexibility 

matrices of the inelastic springs and the elastic beam. The flexibility of an 

inelastic spring is defined by the difference between the tangential flexibility 

of the lumped type hinge defined by the user and the initial flexibility. The 

flexibility of the inelastic spring is zero prior to yielding. The tangential 

flexibility matrix of the inelastic hinge is defined by hysteresis models for 

uni-axial or multi-axial hinges, which are explained later.  

  

 0S H HF F F   

     B SF F F   

     
1K F 

=  

where, 

  FH  : Flexibility matrix of inelastic hinge 

  FH0  : Initial flexibility matrix of inelastic hinge 

  FS  : Flexibility matrix of inelastic spring 

  FB  : Flexibility matrix of elastic beam 

  F  : Element flexibility matrix of inelastic beam 

  K  : Element stiffness matrix of inelastic beam  
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Figure 2.32  Flexibility of inelastic hinges 

 

The relationship of moment-rotational angle of a flexural deformation hinge 

is influenced by the end moments as well as by the flexural moment 

distribution within the member. In order to determine the relationship, the 

distribution of flexural moment needs to be assumed. The initial stiffness 

based on assumed moment distribution is shown below. 
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Figure 2.33 Initial stiffness of inelastic hinges relative to flexural deformations (total length=L, 

flexural stiffness of section=EI)  

 

 

Distributed type hinge 

 
The distributed type hinge is defined by a force-deformation relationship 

for the axial component and a moment-curvature rate relationship for the 

flexural components at the section. The flexibility matrix of a beam 

element, which has been assigned distributed type hinges, is defined by the 

following equations and calculated through the Gauss-Lobbatto integration. 

The flexibility of a section at an integration point in the longitudinal 

direction is obtained by state determination by the hysteresis models of uni-

axial or multi-axial hinges, which are explained later. The stiffness matrix 

is calculated by the inverse matrix of the flexibility matrix. 

 

     
0

( ) ( ) ( )
L

TF b x f x b x dx   

    
1K F 

=  

  

where, 

  f(x) : Flexibility matrix of the section at the location x 

 b(x) : Matrix of the section force distribution function for the location x  

  F : Element flexibility matrix 

  K: Element stiffness matrix 

  L: Length of member 

  x : Location of section 

 

The locations of the integration points are determined by the number of 

integration points. The distances between the integration points are closer 

as the points near both ends. A maximum of 20 integration points can be 

specified. The distributed type hinges for axial and flexural deformations 

are defined in terms of “force-deformation” and “moment-curvature rate” 

relationships respectively.  
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The lumped type hinge is advantageous in that it requires relatively less 

amount of calculations. Because it arbitrarily assumes the distribution of 

member forces, inaccurate results may be obtained if the assumption 

substantially deviates the true distribution. The distributed type on the other 

hand can reflect the member force distribution more accurately. Its 

accuracy increases with the increase in the number of hinges. However, it 

has a drawback of increasing the amount of calculations required to 

determine the hinge state. 

  

 

Yield strength of beam element 

 
The yielding of beam elements due to bending is defined as Figure 2.34. In 

the case of a structural steel section, the first yielding presumes that the 

bending stress of the furthermost point from the neutral axis has reached 

the yield strength. Subsequently, the second yielding presumes that the 

bending stress over the entire section has reached the yield strength. In the 

case of a reinforced concrete section, the first yielding presumes that the 

bending stress of the furthermost point from the neutral axis has reached 

the cracking stress of concrete. The second yielding presumes that the 

concrete at the extreme fiber has reached the ultimate strain, and that the 

stress of reinforcing steel is less than or equal to the yield stress. In the case 

of steel-reinforced concrete composite (SRC) sections, the calculation 

methods for structural steel and reinforced concrete sections are applied to 

the concrete-filled tube type and the steel-encased type respectively. Where 

the interaction between axial force and moments needs to be considered, 

interaction curves are generated by considering the change of neutral axis 

due to axial force.  

 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

226 

P (+)

y

z

My (+)

Mz (+)

1st Yielding

2nd Yielding

-

+

Compression

Tension

Stress

Fsc

Fst

N.A.

-

+

Compression

Tension

Stress

FscFy

Fst Fy

N.A.

flexural stresses of the extreme fibers :

(Fsc Fy and Fst Fy) or (Fsc Fy and Fst  Fy)

Fsc : flexural stress of extreme fiber in compression

Fst : flexural stress of extreme fiber in tension

Fy : yield stress of steel

(a) Steel 

 



 
 
 
 

Nonlinear Analysis 

 

227 

P (+)

y

z

My (+)

Mz (+)

Mcr : cracking moment

P : axial force (positive for compression)

k    : coefficient for the cracking moment 

(ACI=7.5 in lb-in unit, AIJ=1.8 in kgf-cm unit)

Z : elastic section modulus

fck , cu : ultimate compressive strength and strain of the concrete, respectively

fy     : yield stress of the reinforcing bar

fsi , si     : stress and strain of the reinforcing bar, respectively

 1 : coefficient for the ultimate strength of the concrete

1 : coefficient for the height of the concrete stress block
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Figure 2.34 Bases for determining yield strength of beam elements 

 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

228 

P-M and P-M-M interactions 

 
A beam element, which is subjected to bending moments and axial force, 

retains a different yield strength compared to when each component is 

independently acting on the element, due to interaction. Especially in a 3-

dimensional time history analysis, the interaction significantly affects the 

dynamic response of the structure. A column in a 3-dimensional structure 

will experience a complex interaction between bending moments about two 

axes and axial force due to a bi-directional earthquake. The MIDAS 

programs carry out nonlinear time history analysis reflecting a P-M or P-M-

M interaction.  

 

A P-M interaction is reflected by calculating the flexural yield strength of a 

hinge considering the axial force effect. In this case, the interaction of two 

bending moments is ignored. It is assumed that the axial force independently 

interacts with each moment in determining the hinge status at each time step.  

 

The yield strength of bending moment is recalculated while reflecting the 

axial force in the loading case, which satisfies the following three conditions.   

1) It must be the first load case among the time history load cases, which are 

sequenced and analyzed consecutively.   

2) Nonlinear static analysis must be performed.   

3) Displacement control must be used.   

Let us consider an inelastic beam element, which has been assigned hinge 

properties and for which a P-M interaction is applied. The initial section 

force is assumed as the combination of the results of linear elastic analysis 

for all the static load cases included in the time varying static load. The 

factors used for the combination are defined by the Scale Factors entered in 

the time varying static load.  
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Figure 2.35 Calculation of bending yield strength by P-M interaction 

 
The yield strength for bending is determined relative to the location of the 

loading point by static loads on the 2-dimensional interaction curve for the 

calculated section force as shown in Figure 2.35. If the loading point exists 

within the interaction curve, the bending yield strength corresponding to the 

axial force of the loading point is calculated from the interaction curve. If the 

loading point exists beyond the interaction curve, the bending yield strength 

is calculated from the intersection of the yield surface and the straight line 

connecting the origin and the loading point. The 2-dimensional interaction 

curves described thus far being idealized will be also used for defining 3-

dimensional yield surfaces described in the subsequent section.  

  

A P-M-M interaction can be reflected in a nonlinear time history analysis by 

using hysteresis models for multi-axial hinges. The hysteresis models for 

multi-axial hinges represent the interaction of axial force and two bending 

moments, which is depicted by applying a plasticity theory. State 

determination is carried out considering the overall combined change of the 

three components at each time increment. The MIDAS programs support the 

kinematic hardening type.  

 
 

Approximation of the yield surface 

 
In order to consider P-M or P-M-M interaction in calculating the yield 

strength or for state determination of a hinge, a 3-dimentional yield surface 

needs to be defined from P-M interaction curves. Because it is difficult to 

construct an accurate yield surface from the rather limited data of P-M 
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interaction curves, the MIDAS programs approximate the P-M interaction 

curve and yield surface by a simple equation. First, the P-M interaction curve 

is approximated by the following equation.  

 

bal

max max bal

1.0
P PM

M P P

 


 


 

where, 

M  : My or Mz in Element Coordinate System - the bending moment 

component of the loading point 

Mmax: My,max or Mz,max in Element Coordinate System - the 

maximum yield strength for bending about the y- or z- axis  

  P   : Axial force component of the loading point 

Pbal : Pbal,y or Pbal,z, - Axial force at the balanced failure about the 

y- or z- axis bending in the element coordinate system, respectively   

Pmax : Axial yield strength – positive (+), negative (-) non-symmetry 

is possible. 

  γ   : An exponent related to P-M interaction surface 

β   : βy or βz, the exponent related to P-M interaction about the y- or 

z- axis in the element coordinate system, respectively. Each exponent 

is allowed to have different values above and below the 

corresponding Pbal. 

 

An M-M interaction is approximated by the following relationship:  

 

,max ,max

1.0
y z

y z

M M

M M

 

   

where, 

My,max  : Maximum bending yield strength about y-axis in element 

coordinate system 

Mz,max  : Maximum bending yield strength about z-axis in element 

coordinate system 

  α  : An exponent related to interaction curve 

 

For a 3-dimensional yield surface, the equation below, which satisfies the 

approximated interactions above, is used.   
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The approximated exponents for interaction curves, βy, βz and γ can be either 

user defined, or their optimum values can be automatically calculated. The 

optimum values are found by increasing γ from 1.0 to 3.0 by an increment of 

0.1 and calculating the values of βy and βz for a given γ among which the 

values with the minimum margin of error is selected. The values of βy and βz, 

each corresponding to P-My and P-Mz interactions respectively, are 

calculated by equalizing the areas under the above approximated interaction 

curves and the areas under the real interaction curves, which are calculated 

from the section and material properties. The margin of error is defined by 

summing the absolute difference of moment values at the reference 

interaction points and the real interaction curves at the same axial forces.    

 

There are two 3-dimensional yield surfaces, which exist in the form of a tri-

linear skeleton curve. Out of convenience, we will call the inner surface and 

outer surface the first phase yield surface and second phase yield surface 

respectively. In the case of a reinforced concrete section, the first and second 

phase yield surfaces correspond to cracking and yielding respectively. 

Among the two yield surfaces, the first phase yield surface is approximated 

as shown in Figure 2.36. First, the second phase yield surface is 
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approximated by two straight lines, which result in an equal area. Next, the 

parameters for the approximated first phase yield surface are calculated so 

that the curve forms tangent to the inclined line of the two straight lines and 

the original crack curve.  
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             Figure 2.36  Approximation of crack surface of a reinforced concrete section 

 

 
  Inelastic general link elements 

 
Inelastic general link elements are assigned inelastic hinge properties, which are 

used to model specific parts of a structure such as to represent plastic 

deformations of soils concentrated at a spring. The inelastic properties that can 

be assigned to the general link elements in the MIDAS programs are limited to 

the spring type. Such general link elements simply retain only the elastic 

stiffness for each component. By assigning inelastic hinge properties, they 

become inelastic elements. The elastic stiffness for each component becomes the 

initial stiffness in nonlinear analysis. 

 

 
  Hysteresis Model for Uni-axial Hinge  

 
A uni-axial hinge is represented by 3 translational and 3 rotational components, 

which behave independently. The hysteresis models of uni-axial hinges provided 

in the MIDAS programs are founded on a skeleton curve. They are 6 types, 

which are kinematic hardening, origin-oriented, peak-oriented, Clough, 

degrading tri-linear and Takeda types. All the models except for the Clough type 

are of basically a tri-linear type. The first and second phase yield strengths and 
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the stiffness reduction factors with positive (+) and negative (-) nonsymmetry 

can be defined to represent nonsymmetrical sections or material properties. 

However, stiffness reduction for the kinematic hardening type does not support 

non-symmetry due to its characteristics.   

 

In the hysteresis models below, response points represent the coordinates of 

load-deformation points situated on the path of a hysteresis model. Loading 

represents an increase in load in absolute values; unloading represents a decrease 

in load in absolute values; and reloading represents an increase in load in 

absolute values with the change of signs during unloading. Unloading points 

represent response points where loading changes to unloading.  
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D

          

F

D

 
Figure 2.37 Kinematic hardening hysteresis model   Figure 2.38 Origin-oriented hysteresis model 
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Figure 2.39 Peak-oriented hysteresis model             Figure 2.40 Clough hysteresis model 

 
 

Kinematic Hardening Type 

 
Response points at initial loading move about on a trilinear skeleton curve. 

The unloading stiffness is identical to the elastic stiffness, and the yield 
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strength has a tendency to increase after yielding. This, being used for 

modeling the Bauschinger effect of metallic materials, should be used with 

caution for concrete since it may overestimate dissipated energy. Due to the 

characteristics of the model, stiffness reduction after yielding is possible 

only for positive (+) and negative (-) symmetry.   

 
Origin-oriented Type 

 
Response points at initial loading move about on a trilinear skeleton curve. 

The response point moves towards the origin at the time of unloading. When 

it reaches the skeleton curve on the opposite side, it moves along the 

skeleton curve again.   

 
Peak-oriented Type 

 
Response points at initial loading move about on a trilinear skeleton curve. 

The response point moves towards the maximum displacement point on the 

opposite side at the time of unloading. If the first yielding has not occurred 

on the opposite side, it moves towards the first yielding point on the skeleton 

curve.  

 
Clough Type 

 
Response points at initial loading move about on a bilinear skeleton curve. 

The unloading stiffness is obtained from the elastic stiffness reduced by the 

following equation. As the deformation progresses, the unloading stiffness 

gradually becomes reduced.   

0 0

y

R

m

D
K K K

D



   

where, 

  KR  : Unloading stiffness 

  K0  : Elastic stiffness 

  Dy  : Yield displacement in the region of the start of unloading 

 Dm  : Maximum displacement in the region of the start of 

unloading  

(Replaced with the yield displacement in the region where yielding 

has not occurred) 

  β  : Constant for determining unloading stiffness 

 

When the loading sign changes at the time of unloading, the response point 

moves towards the maximum displacement point in the region of the 

progressing direction. If yielding has not occurred in the region, it moves 

towards the yielding point on the skeleton curve. Where unloading reverts to 
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loading without the change of loading signs, the response point moves along 

the unloading path. And loading takes place on the skeleton curve as the 

loading increases.  

 
Degrading Trilinear Type 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

    Figure 2.41 Hysteresis models for trilinear stiffness reduction 

 
Response points at initial loading move about on a trilinear skeleton curve. 

At unloading, the coordinates of the load-deformation move to a path along 

which the maximum deformation on the opposite side can be reached due to 

the change of unloading stiffness once. If yielding has not occurred on the 

opposite side, the first yielding point is assumed to be the point of maximum 

deformation. The first and second unloading stiffness is determined by the 

following equations. As the maximum deformation increases, the unloading 

stiffness gradually decreases.  

 

 1 0RK b K   

2R CK b K   

1

1 M M

M M

F F
b

K D D

 

 

 
  

 
 

where,  

  KR1  : First unloading stiffness 

  KR2  : Second unloading stiffness 

  K0  : Elastic stiffness  

 KC  : First yield stiffness in the region to which the loading point 

progresses due to unloading 

(a) initial unloading before yielding

to uncracked region (small deformation)

(b) initial unloading before yielding 

to uncracked region (large deformation)

and inner loop

K1

F

D

F

D

KR1

KR2

KR1

KR2

(a) Initial unloading before yielding to 

uncracked region (small deformation) 

(b) Initial unloading before yielding to uncracked 

region (small deformation) and inner loop 
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K1  : Slope between the origin and the second yield point in the 

region to which the loading point progresses due to unloading 

b  : Stiffness reduction factor. If unloading takes place between 

the first and second yield points on the skeleton curve, the value is 

fixed to 1.0.  

FM+ , FM- : Maximum positive (+) and negative (-) forces 

respectively 

DM+ , DM- : Maximum positive (+) and negative (-) 

deformations respectively 

 
Takeda Type 

 
Response points at initial loading move about on a trilinear skeleton curve. 

The unloading stiffness is determined by the location of the unloading point 

on the skeleton curve and whether or not the first yielding has occurred in 

the opposite region.  

 

If unloading takes place between the first and second yield points on the 

skeleton curve, the coordinates of the load-deformation progress towards the 

first yield point on the skeleton curve on the opposite side. If the sign of the 

load changes in the process, the point progresses towards the maximum 

deformation point on the skeleton curve in the region of the proceeding 

direction. If yielding has not occurred in the region, the coordinates will 

progress towards the first yield point. When the point meets the skeleton 

curve in the process, it progresses along the skeleton curve.   

 

When unloading takes place in the region beyond the second yield point on 

the skeleton curve, the coordinates of load-deformation will progress based 

on the following unloading stiffness.  

Y C Y
RO

Y C M

F F D
K

D D D


   

    
   

 

where,  

  KRO  : Unloading stiffness of the outer loop 

  FC  : First yield force in the region opposite to unloading point 

 FY  : Second yield force in the region to which unloading point 

belongs 

DC  : First yield displacement in the region opposite to unloading 

point 

DY  : Second yield displacement in the region to which unloading 

point belongs 

DM  : Maximum deformation in the region to which unloading 

point belongs   

β  : Constant for determining the unloading stiffness of the 

outer loop 
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If the sign of load changes in the process, the coordinates progress towards 

the maximum deformation point on the skeleton curve in the region of the 

proceeding direction. If yielding has not occurred in the region, the 

coordinates continue to progress without changing the unloading stiffness 

until the load reaches the first yield force. Upon reaching the first yield 

force, it progresses towards the second yield point. 

 

 

 

 

 

 

 

 

 
 
 
 

그림 0.1 다케다형 이력모델 

 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 2.42 Takeda type hysteresis models 

 
Inner loop is formed when unloading takes place before the load reaches the 

target point on the skeleton curve while reloading is in progress, which takes 

place after the sign of load changes in the process of unloading. Unloading 

stiffness for inner loop is determined by the following equation.  

 

RI ROK K  

where, 

(a) unloading before yielding

to uncracked region (small deformation)

(b) unloading before yielding 

to uncracked region (large deformation)

(c) unloading after yielding 

to uncracked region 

(d) inner loop by 

repeated load reversal
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(a) Unloading before yielding to uncracked 

region (small deformation) 

(b) Unloading before yielding to uncracked 

region (large deformation) 

(c) Unloading after yielding to uncracked region 

 

(d) Inner loop by repeated load reversal 
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  KRI  : Unloading stiffness of inner loop 

 KRO  : Unloading stiffness of the outer loop in the region to which 

the start point of unloading belongs 

  γ  : Unloading stiffness reduction factor for inner loop 

 

In the above equation, β=0.0 for calculating KRO and γ=1.0 for calculating 

KRI are set if the second yielding has not occurred in the region of unloading. 

In the case where the sign of load changes in the process of unloading in an 

inner loop, the load progresses towards the maximum deformation point, if it 

exists on the inner loop in the region of the proceeding direction. If the 

maximum deformation point does not exist on the inner loop, the load 

directly progresses towards the maximum deformation point on the skeleton 

curve. If the maximum deformation point exists and there exists multiple 

inner loops, it progresses towards the maximum deformation point, which 

belongs to the outermost inner loop. Also, if loading continues through the 

point, it progresses towards the maximum deformation point on the skeleton 

curve. 

 
  Hysteresis Model for Multi-axial Hinge 

 
A multi-axial hinge considers interactions between multiple components. This 

can be used to model a column, which exhibits inelastic behavior subject to an 

axial force and moments about two axes. Such multi-component interactions can 

be used to represent complex loading types such as earthquakes. In order to 

model the interactions more accurately, we may discretize a column into solid 

elements and analyze the column. However, this type of approach requires a 

significant amount of calculations. Alternatively, a beam element can be used to 

reduce the number of elements, which is based on a fiber model. A fiber model 

separates a beam section by fibers; but a single beam does not need to be 

segmented into a number of elements. Another method exists in that hysteresis 

models can be used by applying plasticity theories. This method requires a less 

amount of calculations compared to the fiber model to assess the status of the 

hinge. On the other hand, the fiber model retains the advantage of modeling 

nonlinear behavior more accurately. MIDAS provides hysteresis models of 

kinematic hardening type by applying the fiber model and plasticity theories for 

multi-axial hinge.  

   
Kinematic Hardening Type 

 
The hysteresis model of kinematic hardening type for multi-axial hinges 

follows the kinematic hardening rule, which uses two yield surfaces. This is 

basically a trilinear hysteresis model of kinematic hardening type for uni-

axial hinges, which has been expanded into three axes. Assessing the hinge 

status and calculating the flexibility matrix thereby depend on the 

relationship of relative locations of loading points on a given yield surface. 
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The unloading stiffness is identical to the elastic stiffness. The yield surface 

only changes its location, and it is assumed that the shape and size remain 

unchanged. If the loading point is located within the first yield surface, an 

elastic state is assumed. When the loading point meets the first yield surface 

and the second yield surface, the first and second yielding are assumed to 

have occurred respectively.     

 

The flexibility matrix of a hinge is assumed to be the sum of flexibility of 

three springs connected in a series. The serially connected springs are 

consisted of one elastic spring and two inelastic springs. Only the elastic 

spring retains flexibility and the remainder is assumed to be rigid initially. 

As the loading point comes into contact with each yield surface, the 

flexibility of the corresponding inelastic spring is assumed to occur. The 

equation for the flexibility matrix after the N-th yielding is noted below. 

Here, the terms related to the yield surface are calculated only for the yield 

surface with which the loading point is currently in contact.   

( ) ( )1

,(0)

1 ( ) ,( ) ( )

TN
i i

s s T
i i s i i

a a
F K

a K a
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k
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 

  
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,( ) ,( ) ,( 1) ,(0)

1 1 1 1
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n i n i n i n

n i
k r r k

 
    
 
 

 

 i  : Order of yield surface with which the current loading point 

is in contact 

  Fs  : Tangential flexibility matrix of hinge 

  a(i)  : Normal vector at the loading point of i-th yield surface 

 kn,(i)  : i-th Serial spring stiffness of n-th component (elastic 

stiffness for i=0) 

rn,(i)  : Stiffness reduction factor at the i-th yielding of n-th 

component (1.0 for i=0) 

 

In the above flexibility matrix, Fs, the three components are completely 

independent as a diagonal matrix in the elastic state. In the state of yield-

deformation, interactions between the three components take place due to the 

non-diagonal terms of the matrix.   
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Figure 2.43 Hardening rule 

 
When the loading point moves to the exterior of the arrived yield surface, the 

yield surface also moves so as to maintain the contact with the loading point. 

The direction of the movement follows the hardening rule of deformed 

Mroz. If the loading point moves towards the interior of the yield surface, it 

is considered unloading, and the unloading stiffness is identical to the elastic 

stiffness. The yield surface does not move in the unloading process.  

 
Fiber Model 

 
Fiber Model discretizes and analyzes the section of a beam element into 

fibers, which only deform axially. When a fiber model is used, the moment-

curvature relationship of a section can be rather accurately traced, based on 

the assumption of the stress-strain relationship of the fiber material and the 

distribution pattern of sectional deformation. Especially, it has the advantage 

of considering the movement of neutral axis due to axial force. On the other 

hand, a skeleton curve based hysteresis model has a limitation of accurately 

representing the true behavior because some behaviors of a beam element 

under repeated loads have been idealized.  

 

The fiber models in MIDAS assume the following: 1) The section maintains 

a plane in the process of deformation and is assumed to be perpendicular to 

the axis of the member. Accordingly, bond-slip between reinforcing bars and 

S
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C2

S

C1

C1

Mz

My

Mz

My

Sc :  conjugate loading point                              C1 :  translation of the  1st yield surface center

S :  translation of loading point      C2 :  translation of the 2nd yield surface center

(a) hardening after 1st yielding (b) hardening after 2nd yielding
(a) Hardening after 1st yielding 
 

(b) Hardening after 2nd yielding 
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concrete is not considered.  2) The centroidal axis of the section is assumed 

to be a straight line throughout the entire length of the beam element.   

 

x

ECS x-axis

ECS y-axis

ECS z-axis

zi

yi i-th fiber

ECS y-axis

ECS z-axis

 
     Figure 2.44 Discretization of a section in a fiber model 

 
In a fiber model, the status of fibers is assessed by axial deformations 

corresponding to the axial and bending deformations of the fibers. The axial 

force and bending moments of the section are then calculated from the stress 

of each fiber. Based on the basic assumptions stated above, the relationship 

between the deformations of fibers and the deformation of the section is 

given below. 

 

 

( )

1 ( )

( )

y

i i i z

x

x

z y x

x



 



 
 

    
 
 

 

where, 

x : Location of a section 

y(x) : Curvature of the section about y-axis in Element Coordinate 

System at the location x 

z(x) : Curvature of the section about z-axis in Element Coordinate 

System at the location x 

x(x)  : Deformation of the section in the axial direction at the 

location x 

yi  : Location of the i-th fiber on a section 

zi  : Location of the i-th fiber on a section 

i  : Deformation of the i-th fiber 

 

The properties of nonlinear behavior of a section in a fiber model are defined 

by the stress-strain relationship of nonlinear fibers. MIDAS provides steel 
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and concrete material fiber models, and their constitutive models are 

explained below.  

 

(1) Steel fiber constitutive model 

 

Steel fiber constitutive model basically retains the curved shapes 

approaching the asymptotes defined by the bilinear kinematic hardening rule. 

The transition between two asymptotes corresponding to the regions of each 

unloading path and strain-hardening retains a curved shape. The farther the 

maximum deformation point in the direction of unloading is from the 

intersection of the asymptotes, the smoother the curvature becomes in the 

transition region. The constitutive model is thus defined by the equation 

below.  

 
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ˆˆ
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b
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
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 
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 
















 
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  : Strain of steel fiber 

 : Stress of steel fiber 

(r, r) : Unloading point, which is assumed to be (0, 0) at the initial 

elastic state 

(0, 0) : Intersection of two asymptotes, which defines the current 

loading or unloading path  

b : Stiffness reduction factor 

R0, a1, a2 : Constants 

 : Difference between the maximum strain in the direction of loading 

or unloading and 0 (absolute value) 

However, the initial value of the maximum strain is set to (Fy/E). (refer to 

Figure 2.45)  
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      Figure. 2.45 Steel fiber constitutive model 

 
(2) Concrete fiber constitutive model 

 

MIDAS uses the equation of envelope curve proposed by Kent and Park 

(1973) for the concrete fiber constitutive model of concrete under 

compression. Tension strength of concrete is ignored. The equation of the 

envelope curve for compression is noted below. This is a well known 

material model for considering the effect of increased compression strength 

of concrete due to lateral confinement.   

 

 
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c c u
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    

     
      

       


        

 

where, 

  : Strain of concrete fiber 

  : Stress of concrete fiber 

0  : Strain at maximum stress 

u  : Ultimate strain 

K  : Factor for strength increase due to lateral confinement  

Z  : Slope of strain softening 

fc’  : Compressive strength of concrete cylinder (MPa) 
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K·fc’

ε0
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εu
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compressive

stress    

compressive
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      Figure. 2.46 Concrete fiber constitutive model 

 
The concrete, which has exceeded the ultimate strain, is assumed to have 

arrived at crushing, and as such it is considered unable to resist loads any 

longer. Kent and Park suggested the following equation in order to calculate 

the parameters defining the above envelope curve for a rectangular column 

section.  
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where, 

fyh  : Yield strength of stirrups 

s  : Reinforcing ratio of stirrups = Volume of stirrups / Volume 

of concrete core 

h’  : Width of concrete core (longer side of a rectangle) 

(The range of the concrete core is defined as the outer volume 

encompassing the stirrups.) 

sk  : Spacing of stirrups 

 

Scott et al (1982) proposed the following equation of ultimate strain for a 

laterally confined rectangular column.  

 0.004 0.9 / 300u s yhf    
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When unloading takes place on the above envelope curve, the unloading path 

is defined by the equations below, pointing towards a point (p, 0) on the 

strain axis. When the strain reaches this point, it moves to the tension zone 

following the strain axis.  
2

0 0 0 0

0 0 0

0.145 0.13 2

0.707 2 0.834 2

p r r r

p r r

for

for

   

   

  

  

     
         

     

   
       

   

 

r  : Strain at the start of unloading 

p  : Strain at the final point of the unloading path 

 

If the compressive strain increases again, the load follows the previous 

unloading path and reaches the envelop curve.  

 
 

 

 

  Hysteresis Model for Multi-linear Hinge 

 
(1) Multi-Linear Elastic Type 

 

Overview of Hysteresis 

Multi-Linear Elastic Type Hysteresis is nonlinear but elastic. The force-

displacement relationship of the skeleton curve is defined by a multi-linear 

curve. Irrespective of loading and unloading, no hysteresis loop is generated 

in Multi-Linear Elastic Type, and the force-displacement relationship exists 

only on the skeleton curve.  

 

The curve can be symmetrically or unsymmetrically defined. The types of 

corresponding elements include lumped hinge, distributed hinge, spring and 

truss elements. 

 

Definition of Skeleton Curve 

 Force-Displacement Curve  

The skeleton curve is defined by the force-displacement relationship defined 

by the user. The following restrictions apply to defining the force-

displacement curve: 
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 Force-Displacement Curve has no limitation on the number of data. 

 The initial value must be set to (0,0). 

 No identical values can be used for Displacements, and the force-

displacement data are arranged in reference to the displacements.  

 The signs of force and displacement must be the same at all times. 

 A negative slope is not permitted in Force-Displacement Curve except for 

the final value. As such, the forces must gradually increase on the positive 

side and decrease on the negative side except for the last points on the curve. 

No fluctuation is permitted. 

 

Rules for Hysteresis of Multi-Linear Elastic Type 

The rules for hysteresis of Multi-Linear Elastic Type are identical to those of 

Elastic Tetralinear Type. 

 

(2) Multi-Linear Plastic Kinematic Type 

 

Overview of Hysteresis 

Multi-Linear Plastic Kinematic Type Hysteresis is defined on multi-linear 

skeleton curves based on the kinematic hardening rules. The curve can be 

symmetrically or unsymmetrically defined. The types of corresponding 

elements include lumped hinge, distributed hinge, spring and truss elements. 

 

Figure 2.47   Multi-Linear Plastic Kinematic Hysteresis Model  
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Definition of Skeleton Curve 

  

  Force-Displacement Curve  

The skeleton curve is defined by the force-displacement relationship defined 

by the user. The following restrictions apply to defining the force-

displacement curve: 

 

 Force-Displacement Curve has no limitation on the number of data. 

 At least one data point must be defined on both the positive and negative 

sides, and the numbers of data on the positive and negative sides must be 

identical. 

 The initial value must be set to (0,0). 

 No identical values can be used for Displacements, and the force-

displacement data are arranged in reference to the displacements. 

 The signs of force and displacement must be the same at all times. 

 A negative slope is not permitted in Force-Displacement Curve. As such, the 

forces must gradually increase on the positive side and decrease on the 

negative side. No fluctuation is permitted. 

 

Rules for Hysteresis of Multi-Linear Plastic Kinematic Type  

1. In the case of ( ) ( )1plP P  , the hysteresis curve for Multi-Linear 

Plastic Kinematic Type follows the conventional kinematic 

hardening rules.  
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2. In the case of ( ) ( )1plP P  , when the force is unloaded on the skeleton 

curve, the unloading takes place backward at a slope of K0 by the 

magnitude of P1(+) or P1(-) (Rule:1). It is then directed towards the point 

of unloading by the magnitude of the first yielding displacement, D1(-) or 

D1(+), on the opposite side until the restoring force becomes 0 (Rule:2). 

Once the restoring force exceeds 0, the kinematic hardening rules apply.  

 

P

D

P2(+)

P2(-)

P1(-)

D1(-)

K0
(+)

( )

plP

K0
(+)

P1(+)

( ) ( )1plP P 

P1(-)

D1(-)

P1(+)

Rule: 1

Rule: 2

 
 
 
 
 
(3) Multi-Linear Elastic Type  

 

Overview of Hysteresis 

Multi-Linear Plastic Takeda Type Hysteresis is a multi-linear stiffness 

degradation model. The curve can be symmetrically or unsymmetrically 

defined. The types of corresponding elements include lumped hinge, 

distributed hinge, spring and truss elements. 



 
 
 
 

Nonlinear Analysis 

 

249 

 

P1(+)

P1(-)

D1(+)D1(-)
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D

 

Figure 2.48  Multi-Linear Plastic Takeda Hysteresis Model  

 

Definition of Skeleton Curve 

  

The nonlinear characteristics of the hysteresis model are defined as follows:  

 

  Force-Displacement Curve  

 

The skeleton curve is defined by the force-displacement relationship defined 

by the user. The following restrictions apply to defining the force-

displacement curve: 

 

 Force-Displacement Curve has no limitation on the number of data. 

 At least one data point must be defined on both the positive and negative 

sides, and the numbers of data on the positive and negative sides must be 

identical. 

 The initial value must be set to (0,0). 

 No identical values can be used for Displacements, and the force-

displacement data are arranged in reference to the displacements.  

 The signs of force and displacement must be the same at all times. 

 A negative slope is not permitted in Force-Displacement Curve. As such, 

the forces must gradually increase on the positive side and decrease on the 

negative side. No fluctuation is permitted. 
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 Unloading Stiffness Parameter :    

 

 The stiffness at unloading on the (+) and (-) sides is computed as follows. 

When 0  , the unloading stiffness becomes the same as the elastic stiffness. 

 
 

 

 

 

 

where, ( )
1D
 , (-)

1D : Yielding displacements on (+) & (-) sides 
( )
maxD  , (-)

maxD : Maximum displacements on (+) & (-) sides 

(Replace with the yielding displacement when yielding has not 

occurred.) 

 : Unloading stiffness parameter (0≤  ≤1) 

 

 

Rules for Hysteresis of Multi-Linear Plastic Takeda Type 

 

1. In the case of max 1D D , the curve becomes linear elastic, which retains 

the elastic slope, K0, passing though the origin.
 
 

 
2. When D first exceeds

 ( )1D   or exceeds the maximum D up to the present, 
the curve follows the skeleton curve.  

 
3. When the force is unloaded at the state, ( )1D D 

 
or ( )1D D  , the curve 

follows the unloading stiffness at a slope of ( )
Kr

 or (-)
Kr . 

 

4. D moves towards the Dmax on the opposite side when the sign of the force 

changes in the process of unloading. If the opposite side has not yielded, 

the yielding point becomes the maximum displacement. 
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(4) Multi-Linear Elastic Type  

 

Overview of Hysteresis 

Multi-Linear Plastic Pivot Type Hysteresis (Pivot Hysteresis hereafter) is a 

multi-linear stiffness degradation model proposed by R. K. Dowell, F. Seible 

& E. L. Wilson(1998)1. Pivot Hysteresis uses multiple pivot points to control 

the nonlinear relationship of stress-strain or moment-rotation of reinforced 

concrete members. Thus, this model can accurately depict the stiffness 

degradation and the pinching effect when unloading takes place.  

 

The curve can be symmetrically or unsymmetrically defined. The types of 

corresponding elements include lumped hinge, distributed hinge, spring and 

truss elements. 

 

 Definition of Skeleton Curve  

The nonlinear characteristics of the hysteresis model are defined as follows:  

 

  Force-Displacement Curve  

The skeleton curve is defined by the force-displacement relationship 

defined by the user. The following restrictions apply to defining the force-

displacement curve:  

 Force-Displacement Curve has no limitation on the number of data. 

 At least one data point must be defined on both the positive and 

negative sides, and the numbers of data on the positive and negative 

sides must be identical. 

 The initial value must be set to (0,0). 

 No identical values can be used for Displacements, and the force-

displacement data are arranged in reference to the displacements.   

 The signs of force and displacement must be the same at all times. 

 A negative slope is not permitted in Force-Displacement Curve 

except for the final value. As such, the forces must gradually 

increase on the positive side and decrease on the negative side 

except for the last points on the curve. No fluctuation is permitted. 

 

                                                 
1) Robert K. Dowell, Frieder Seible, and Edward L. Wilson, “Pivot Hysteresis Model for 

Reinforced Concrete Members”, ACI STRUCTURAL JOURNAL, n95, 1998, pp.607-

617. 
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 Primary Pivot Point  

 

The Primary Pivot Points, P1 and P3 represent the points towards which the 

unloading curves are oriented in the Q1 and Q3 zones. The Primary Pivot 

Points, P1 and P3 control the degradation of the unloading stiffness caused by 

the change in deformation or displacement. P1 and P3 are located along the 

extended lines of the initial stiffness on the (+) and (-) sides, which are 

defined by the yield strengths, Fy(+) and Fy(-) and Scale Factors, 1 and 2 .  
 

T

h

e

 

l

The ocations of the Primary Pivot Points, P1 and P3 move to P1
* and P3

* after 

yielding respectively, whenever the maximum displacement point is renewed 

by the Initial Stiffness Softening Factor,  . However, when  =0, the 

locations of the Primary Pivot Points, P1 and P3 remain unchanged.  
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Figure 2.49 Primary Pivot Point 

 

 Pinching Pivot Point  

 

The Pinching Pivot Points, PP2 and PP4 represent the points towards which 

the unloading curves are oriented in the Q1 and Q3 zones after the restoring 

force exceeds 0. PP2 and PP4 are located on the skeleton curve in the elastic 

zone on the (+) and (-) sides, which are defined by the yield strengths of the 

initial stiffness, Fy(+) and Fy(-) and Scale Factors, 1 and 2 .  

1  : Scale Factor used to define the pivot point, P1 when unloading from 

the Q1 side ( 1 ≥1) 

2  : Scale Factor used to define the pivot point, P3 when unloading from 

the Q3 side ( 2 ≥1) 
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1  : Scale Factor used to define the pivot point, PP2 when loading on 

the Q2 side (0< 1 ≤1) 

2  : Scale Factor used to define the pivot point, PP4 when loading on 

the Q4 side (0< 2 ≤1) 

 
 

The locations of the Pinching Pivot Points, PP2 and PP4 after yielding will 

move to PP2
* and PP4

* respectively, whenever the maximum displacement 

point is renewed by the Initial Stiffness Softening Factor,  . However, 

when  =0, the Pinching Pivot Points, PP2 and PP4 remain unchanged.  
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Figure 2.50 Pinching Pivot Point 

 

 Initial Stiffness Softening Factor :   

 


 
is an initial stiffness softening factor used to control the initial stiffness 

degradation after yielding. After yielding, the Primary Pivot Points, P1 and P3 

are relocated to P1
* and P3

*, which are located on the lines extended from the 

maximum displacement points on the (+) and (-) sides respectively. P1
* and 

P3
* are defined by Fy(+) and Fy(-), Scale Factors, 1 and 2 , and the initial 

stiffness softening factor,  .  

In addition, the Pinching Pivot Points, PP2 and PP4 move to PP2
* and PP4

* 

respectively. PP2* (or PP4*) is defined by the intersection point of the 

straight line passing through P1* and the origin (or P3* and the origin) and 

the straight line connecting PP2 (or PP4) to the maximum displacement point 

on (-) side (or (+) side). 
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 Renewal of Scale Factors, 1 and 2  

 
The Pinching Pivot Point Scale Factors, 1 and 2  are renewed after 

yielding under the conditions below. 
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Figure 2.51 Initial Stiffness Softning Factor 
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Figure 2.52 Renewal of Scale Factors, 1 and 2  

 

 

Rules for Hysteresis of Multi-Linear Plastic Pivot Type 

 

1. In the case of max 1D D , the curve becomes linear elastic, which retains 

the elastic slope, Ko passing the origin. (Rule: 0) 

2. i) The curve follows the skeleton curve when the displacement exceeds 

( )1D  for the first time. (Rule: 1)  

 ii) When unloading takes place on this straight line, the curve is directed 

towards P1 or P3. (Rule: 2) 

 iii) In the case of reloading before the restoring force reaches 0, the curve 

continues to follow the same unloading straight line. (Rule: 3) If it 

reaches the skeleton curve, it follows along the skeleton curve. (Rule: 4) 

iv) When the restoring force exceeds 0, the curve is directed towards PP2 or 

PP4. (Rule: 5)  

v) When PP2 or PP4 is exceeded and yielding has not occured, the curve 

moves along the straight line of the elastic slope. (Rule: 6) When 

yielding takes place due to large deformation, the curve moves along the 

skeleton curve. (Rule: 7) 
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F

DD1(+)

Rule: 0

Rule: 2

Rule: 4

Rule: 3

Rule: 5

Fy
(+)

Fy
(-)

α2Fy
(-)

α1Fy
(+)

β2Fy
(-)

β1Fy
(+)

P1

D1(-)
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K0

P3

Rule: 6

Rule: 7

PP2

 ( ) ( )

max max, 
D F

 
 

3. i) When unloading takes place on the skeleton curve after both sides have 

yielded, the curve moves towards P1 or P3. (Rule: 8) However, it is 

directed towards the renewed P1* or P3* if 


is not equal to 0.  

ii) If the restoring force exceeds 0, the curve is directed towards PP2 or PP4. 

However, it is directed towards the renewed PP2
* or PP4

* if  is not 

equal to 0. (Rule: 9)   

iii) If unloading takes place before reaching PP2 or PP4, the curve moves 

along the straight line passing through the unloading point and P4 (or 

P2). (Rule:10) If reloading takes place before the restoring force 

reaches back to 0, the curve moves back towards P3 (or P1). (Rule: 11) 

iv) If the restoring force exceeds 0, the curve moves along the line 

connecting the point of zero restoring force to P3 (or P1). (Rule: 12) 

When the curve intersects with a line connecting PP2 (or PP4) and 

(or ), it is directed towards  (or ). (Rule: 13)  
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Material Nonlinear Analysis 
 

A fundamental difference between elastic and plastic material behaviors is that 

no permanent deformations occur in the structure in elastic behavior, whereas 

permanent or irreversible deformations occur in the structure in plastic 

behavior.  

 

 Plasticity theory 

 

The components of static plastic strain are constituted by the following 

assumptions: 

 

 Constitutive response is independent of the rate of deformation. 

 Elastic response is not influenced by plastic deformation. 

 Additive strain decomposition into elastic and plastic parts is defined by 

 

 

     
   e p

                                                                           (1) 

 

where, 

  : total strains 

 e  : elastic strains 

 p  : plastic strains 

 

And the following basic concepts are used to formulate the equations: 

 

 Yield criteria to define the initiation of plastic deformation  

 Flow rule to define the plastic straining 

 Hardening rule to define the evolution of the yield surface with plastic 

straining 

 

 

Yield criteria 

The yield function (or loading function), F, which defines the limit for the range of 

elastic response, is as follows (Figure 2.53):  

 

( , , ) ( , ) ( ) 0p p

e pF          
                         (2) 
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where, 

  : current stresses 

 e
 : equivalent or effective stress 

  : hardening parameter which is a function of p  

 p  : equivalent plastic strain 

 

In classical plasticity theory, a state of stress at which the value of the yield 

function becomes positive is not admissible. When yielding occurs, the state of 

stress is corrected by scaling plastic strains until the yield function is reduced to 

zero. This process is known as the plastic corrector phase or return mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.53 Geometric illustration of associated flow rule and singularity 

 

Flow rule 

The flow rule defines the plastic straining, which is expressed as follows (Figure 

2.53): 

 

 

  



 


b

p g
d d d

                                                      (3) 
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where,  







g
 : the direction of plastic straining 

d  : plastic modulus which identifies the magnitude of plastic 

straining 

 

The function g is termed as the ‘plastic potential’ function, which is generally 

defined in terms of stress invariants. If g=F, it is termed as ‘associated flow rule’, 

and if g≠F, it is referred to as ‘non-associative flow rule’. 
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The associated flow rule is adopted for all the yield criteria of MIDAS programs. 

As the direction of the plastic strain vector is normal to the yield surface, the above 

equation can be expressed as follows:  

 

  



 


a

p F
d d d

         (4) 

 

The corner or the flat surface in Figure 2.53 represents a singular point, which can 

not uniquely determine the direction of plastic flow. These points require special 

consideration.  

 

Hardening rule 

The hardening rule defines the expansion and translation of the yield surface with 

plastic straining as the material yields.  

 

Depending on the method of defining the effective plastic strain, the hardening rule 

is classified into ‘strain hardening’ and ‘work hardening’. The strain hardening is 

defined by the hypothesis of plastic incompressibility, and as such it is appropriate 

for a material model, which is not influenced by hydrostatic stress. Accordingly, 

work hardening, which is defined by plastic work, is more generally applicable 

than strain hardening.  

 

Also, depending on the type of change of yield surface, the hardening rule is 

classified into ‘isotropic hardening’, ‘kinematic hardening’ and ‘mixed hardening’ 

(Figure. 2.54).  
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Figure 2.54 Mixed hardening with kinematic hardening 

 

■  Classification by the method of defining the effective plastic strain 

1.  Strain hardening 

The effective plastic strain in strain hardening is defined as follows: 

 

 

 
2 2

3 3
     a a

T
p p T

pd d d d

                               (5) 

 

The effective plastic strain is derived from transforming the norm of plastic strains 

to conform to uniaxial strain with the assumption that there is no volumetric plastic 

deformation. Although this is applicable in principle only to Tresca or von Mises, it 

is often applied to other cases because of numerical convenience. 
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2.  Work hardening 

The increment of plastic work is as follows: 

 

     aT p T

pdW d d
     (6) 

 

In the case of uniaxial strain, the increment of the plastic work is expressed as, 

 

1 1    p e pdW d d
    (7) 

 

Hence the effective plastic strain pertaining to work hardening is defined as 

follows: 

 


 




a
T

p

e

d d

     (8) 

 

 

■  Classification by the types of change of yield surface 

1.  Perfectly plastic 

A perfectly plastic material does not change the yield surface even after plastic 

deformation has taken place. The yield function then can be expressed as follows: 

 

   ,     eF
    (9) 

where,  

  :  constant 

 

2.  Isotropic hardening 

In the case of isotropic hardening, the yield surface expands uniformly as shown in 

Figure 2.55(a). The yield function can be expressed as follows: 

 

     ,      e pF
   (10)  

 

3.  Kinematic hardening 

In the case of kinematic hardening, the size of the yield surface remains unchanged 

and the center location of the yield surface is shifted as shown in Figure 2.55(b). 

The yield function can be expressed as follows:  
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   , ,        eF
   (11) 

 

where,  
  : the center coordinates of yield surface 

  : constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Isotropic hardening                  (b) Kinematic hardening 

Figure 2.55 Hardening rule in 1-dimension 

 

 

In kinematic hardening, it becomes important to determine the center coordinates 

of the subsequent yield surface,  . In order to determine the “kinematic shift”, 

 , there exist Prager’s hardening rule, Ziegler’s hardening rule, etc. 

 

The Prager’s hardening rule can be expressed as, 

 

    ap

p pd C d C d
    (12) 

 

where,  

pC : Prager’s hardening coefficient 

 

This method may present some problems when it is used in the sub space of stress. 

For example, d  may not be 0 even any component of stresses is 0, which may 

not only present translation of the yield surface. The Ziegler’s hardening rule on 

  

  
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the other hand assumes that the rate of translation of the center, d , takes place in 

the direction of the reduced-stress vector,   . Hence, it presents no such 

problem. This hardening rule is expressed as follows:  

 

            z pd d C d
   (13) 

 

where,  

zC : Ziegler’s hardening coefficient 

 

4.  Mixed hardening 

Mixed hardening is a hardening type, which represents the mix of isotropic 

hardening and kinematic hardening, which is expressed as follows: 

 

     , ,         e pF
   (14) 

 

 

■  Constitutive equations 

 

Standard plastic constitutive equations are formulated as below. Stress increments 

are determined by the elastic part of the strain increments. 

 

That is, 

 

          D D a
e p ed d d d d

                           (15) 

 

where, 
e

D : elastic constitutive matrix 

 

In order to always maintain the stresses on the yield surface, the following 

consistency condition needs to be satisfied. 

 

  0    
  

  
      
  

a D a D a

T

p T e T e

p

F F F
dF d d d d h d

         (16) 

where,   h: plastic hardening modulus ( )e

p

d

d




   
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Accordingly, the rate of infinitesimal stress increments can be obtained as follows: 

 
e ed d d   D D a

 

 
 

    

D aa D
D

a D a

e T eT

e

T e
d d

h
                                (17) 

 

When the full Newton-Raphson iteration procedure is used and if a consistent 

stiffness matrix is used, a much faster convergence can be achieved due to the 

second-order convergence characteristic of the Newton-Raphson iteration 

procedure.   

e e ed d d d    



  



a
D D a D

 

 
 

    

Raa R
R

a Ra

T T

T
d d

h
                                   (18) 

 

where, 

 
1

1
e e e ed d 




 
      

a
R I D D I D A D

 
 

 

■  Stress integration 

 

The following two methods can be used for the integration of stresses: 

 

 Explicit forward Euler algorithm with sub-incrementation (Figure 2.56 & 

57) 

 

 Implicit backward Euler algorithm (Figure. 2.58) 
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Figure. 2.56 Explicit forward-Euler procedure 
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ANALYSIS FOR CIVIL STRUCTURES 

 

268 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.57 Sub-incrementation in Explicit forward-Euler procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.58 Implicit backward-Euler procedure 
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A, B, C, D: stress state at each sub-increment after 
correction 
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In the Forward-Euler algorithm, the hardening data and the direction of plastic flow 

are calculated at the intersection point, where elastic stress increments cross the 

yield surface (at point A in Figure. 2.57). Whereas in the Backward-Euler 

algorithm, they are calculated at the final stress point (at point B in Figure. 2.58). 

 

The Forward-Euler algorithm is relatively simple, and the stresses are directly 

integrated. That is, it need not iterate at the Gauss points, but presents the following 

drawbacks:  

 It is conditionally stable. 

 Sub-increments are required while correcting the stresses to obtain 

allowable accuracy. 

 An artificial returning scheme is required to correct the stress state for 

drift from the yield surface. 

 

Also, this method does not permit formulating a consistent stiffness matrix. 

 

The Implicit Backward-Euler algorithm is unconditionally stable and accurate 

without sub-increments or artificial returning. However for general yield criteria, 

iterations are required at the Gauss points. Because a consistent stiffness matrix can 

be formulated using this method, even if iterations are performed at the Gauss 

points, it is more efficient if the Newton-Raphson iteration procedure is used. 

 

Steps for applying the Explicit forward-Euler procedure 

1.  Calculate strain increments. 

 

 B ud d
     (19) 

 

where,  

B  : strain-displacement relation matrix 

d  : the changes of displacements 

 

 

2.  Calculate elastic stresses assuming elastic straining (at point B in Figure 

2.56(a)). 

 

 

  


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D
e

B X

d d

d
     (20) 
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The Figure. 2.56 should be referenced for the subscripts in the equations above and 

below. 

 

3. If the calculated stresses remain on the yield surface, stress correcting is 

completed. If the stresses exist beyond the yield surface, the stresses are 

returned to the yield surface by plastic straining.  

 

4. Subsequently, the stresses at the intersection point are calculated. Elastic stress 

increments are divided into allowable stress increments and unallowable stress 

increments; whereas, stresses at the intersection point are calculated by the 

following expressions (point A in Figure. 2.56(a)):   
 

  1 0   




X

B

B X

F r d

F
r

F F
    (21) 

 

5. Further straining would cause the stress location to traverse the yield surface. 

This is approximated by sub-dividing the unallowable stress increments, rd , 

into the m number of small stress increments (Figure 2.57). The number of 

sub-increments, m is directly related to the magnitude of the error resulted 

from a one step return, which is calculated as, 
 

  INT 8 1    eB eA eAm
   (22) 

 

6. If the final stress state does not lie on the yield surface, the following method 

of artificial returning is used to return the stress to the yield stress (point E in 

Figure 2.57). 

 



  




 

a D a

D a

C
C T e

C C

e

D C C C

F

h

    (23) 

 

Notes 

 The shape of the yield surface is corrected using the hardening rule at the 

end of each sub-increment. 

 Unloading is assumed to be elastic. 
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Steps for applying the Implicit backward-Euler procedure 

The final stress in the Backward-Euler algorithm is calculated by the following 

equation:  

 

    D a
e

C B Cd
    (24) 

 

The Figure 2.58 should be referenced for the subscripts. 

 

Since the point C in the equation (24) is unknown, the Newton iteration is used to 

evaluate the unknowns. Accordingly, a vector, r , is set up to represent the 

difference between the current stresses and the backward-Euler stresses. 

 

     r D a
e

C B Cd
    (25) 

 

Now, iterations are introduced in order to reduce r  to 0 while the final stresses 

should satisfy the yield criterion, f=0. Using assumed elastic stresses, a truncated 

Taylor expansion is applied to the equation (25) to produce a new residual, 

 

   r r D a
e

n o     (26) 

 

where,  

  : the change in   

  : the change in d  

 

Setting the above equation to 0, and solving it for  , we obtain the following: 

 

   r D a
e

o      (27) 

 

Similarly, a truncated Taylor expansion is applied to the yield function, which 

results in the following: 

 

0   
 

 
      

 
a

T

T

Cn Co p Co C

p

F F
F F F h

 (28) 

where, 

 p : effective plastic strain 
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Hence,   is obtained, and the final stress values can be obtained as well. 
 







a r

a D a

T

o o

T e

F

h
     (29) 

 

 

■  Plastic material models 

 

The following 4 types of general plastic models are used: 

 

 Tresca & von Mises – suitable for ductile materials such as metals, which 

exhibit plastic incompressibility (Figure 2.59). 

 

 Mohr-Coulomb & Drucker-Prager – suitable for materials such as concrete, 

rock and soils, which exhibit volumetric plastic deformations (Figure 2.60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.59  Tresca & von Mises yield criteria 

 

 

Hydrostatic axis 

von Mises yield surface 

Tresca yield surface 

3  

1  

2  

π-plane 

 



 
 
 
 

Nonlinear Analysis 

 

273 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.60  Mohr-Coulomb & Drucker-Prager yield criteria 

 

 

Tresca criterion 

The Tresca yield criterion is suitable for ductile materials such as metals, which 

exhibit little volumetric plastic deformations. The yielding of a material begins 

when the maximum shear stress reaches a specified value. So if the principal 

stresses are  1 2 3 1 2 3, ,       , the yield function becomes the equation (30).  

 

   1 3,        pF
   (30) 

 

Numerical problems arise when the stress point lies at a singular point on the yield 

surface, which occurs when the lode angle   approaches  30°. In such cases, the 

stress integration scheme must be corrected.  
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Von Mises criterion 

The Von Mises criterion is a most widely used yield criterion for metallic materials. 

It is based on distortional strain energy, and the yield function is expressed as 

follows: 

 

   2, 3     pF J
    (31) 

 

where, 

J2: second deviatoric stress invariant 

 

Mohr-Coulomb criterion 

The Mohr-Coulomb criterion is suitable for such materials as concrete, rock and 

soils, which exhibit volumetric plastic deformations. The Mohr-Coulomb yield 

criterion is a generalization of the Coulomb’s friction rule, which is defined by, 

 

   , tan       nF c
   (32) 

 

where,  

  : the magnitude of shearing stress 

 n
 : normal stress 

c : cohesion 

  : internal friction angle 

 

The cohesion, c, and the internal friction angle,  , are dependent upon the strain 

hardening parameter,  . 

 

Similar to the Tresca criterion, numerical problems occur when the stress point lies 

at a singular point on the yield surface. For the Mohr-Coulomb criterion, such 

numerical problems occur as the lode angle,  , approaches  30° or at the apex 

points. Hence, the stress integration scheme must be corrected for the two cases.  
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Drucker-Prager criterion 

The Drucker-Prager criterion is suitable for such materials as soils, concrete and 

rock, which exhibit volumetric plastic deformations. This criterion is a smooth 

approximation of the Mohr-Coulomb criterion and is an expansion of the von 

Mises criterion. The yield function includes the effect of hydrostatic stress, which 

is defined as follows: 

 

 
   

1 2

2sin 6 cos
,

3 3 sin 3 3 sin

 
 

 
  

 

c
F I J

  (33) 

 

where, 

I: first stress invariant 

 

For the Drucker-Prager criterion, Numerical problems occur when the stress point 

lies at the apex points of the yield surface. 
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Masonry Model 

 

  Introduction 

Masonry, though a traditional material which has been used for construction for 

ages, is a complex material.  It is a complex composite material, and its mechanical 

behavior, which is influenced by a large number of factors, is not generally well 

understood.  In engineering practice, many engineers have adopted an elastic 

analysis for the structural behavior of masonry using rather arbitrary elastic 

parameters and strengths of masonry.  Such analyses can give wrong and 

misleading results.  The proper way to obtain elastic parameters of masonry is 

through a procedure of homogenization described in the next section. 

The effect of nonlinearity (i.e., tensile crack, compressive failure, and so on.) to the 

behavior of masonry model is very significant and must be accurately taken into 

account in analyzing the ultimate behavior of masonry structures. Having their own 

advantages and restrictions, many researches have been conducted, for instance, 

“Equivalent nonlinear stress-strain concept” of J. S. Lee & G. N. Pande1, 

Tomaževic’s “Story-Mechanism”2, the finite element analysis approach of 

Calderini & Lagomarsino3, and “Equivalent frame idealization” by Magenes et al.4.  

Thus, in practical application of crack effect to the masonry structure, one must be 

well aware of unique characteristics of each of the nonlinear models for masonry 

structure. The main concept of the nonlinear masonry model adopted in the 

masonry model of MIDAS is based on the line of theory of J.S. Lee & G. N. Pande 

and described later.   

 

  Homogenization Techniques in Masonry Structures 

 

Masonry structures can be numerically analyzed if an accurate stress-strain 

relationship is employed for each constituent material and each constituent material 

is then separated individually. However, a three-dimension-analysis of a masonry 

structure involving even a very simple geometry would require a large number of 

elements and the nonlinear analysis of the structure would certainly be intractable. 

To overcome this computational difficulty, the orthotropic material properties 

proposed by Pande et al.5,6 can be introduced to model the masonry structure in the 

sense of an equivalent homogenized material. The equivalent material properties 

introduced in Pande et al. are based on a strain energy concept.  The details of the 

procedure to obtain equivalent elastic parameters based on the homogenization 

technique are given in the following.  The basic assumptions made to derive the 

equivalent material properties through the strain energy considerations are: 
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1. Brick and mortar are perfectly bonded 

2. Head or bed mortar joints are assumed to be continuous 

 

The second assumption is necessary in the homogenization procedure, and it has 

been shown7 that the assumption of continuous head joints instead of staggered 

joints, as they appear in practice, does not have any significant effect on the stress 

states of the constituent materials.   

Let the orthotropic material properties of the masonry panel be denoted by xE
, yE

, 

zE , xy
, xz , yz

, xyG , yzG , xzG , Figure 2.61. The stress/strain relationship of the 

homogenized masonry material is represented by 

 

D            (1) 

 

or 

 

C            (2) 

 

where, 

 

 

 , , , , ,

T

xx yy zz xy yz xz

T

xx yy zz xy yz xz

      

      




     (3) 

 

are the vectors of stresses and strains in the Cartesian coordinate system. 
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 
 
 
 
 
 
 
    (4) 

 

 

The details of the derivation of orthotropic elastic material properties of masonry in 

terms of the properties of the constituents are given in ‘Orthotropic Properties of 

Masonry based on Strain Energy Rule’. In the mathematical theory of 

homogenization, there has been an issue relating to the sequence of 

homogenization, if there are more than two constituents.  For example, if we 

homogenize bricks and mortar in head joints first and then homogenize the 

resulting material with bed joints at the second stage, then the result may not be the 

same if we had followed a different sequence.  However, it has been shown in the 

case of masonry, the sequence of homogenization does not have any significant 

influence.  Here we present in ‘Orthotropic Properties of Masonry based on Strain 

Energy Rule’ equations for equivalent properties if bricks and bed joints are 

homogenized first.  It is noted that, in Pande et al., the equivalent material 

properties were derived with the brick and the head mortar joint being 

homogenized first. The equivalent orthotropic material properties derived from the 

homogenization procedure are used to construct the stiffness matrix in the finite 

element analysis procedure, and from this, equivalent stress/strains are then 

calculated. The stresses/strains in the constituent materials can be evaluated 

through structural relationships, i.e., 
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 b b

bj bj

hj hj

S

S

S

 

 

 



   

           (5) 

 

where subscripts b, bj and hj represent brick, bed joint and head joint respectively.   

 

The structural relationships for strains can similarly be established. The structural 

matrices S are listed in ‘Structural Relationship of Masonry’. From the results 

listed in Pande et al., it can be shown that the orthotropic material properties are 

functions of  

 

1. Dimensions of the brick, length, height and width 

2. Young’s modulus and Poisson’s ratio of the brick material 

3. Young’s modulus and Poisson’s ratio of the mortar in the head and bed joints 

4. Thickness of the head and bed mortar joints 

 

       
(a) Reference System                                           (b) Example of local axis rule  

 

Figure. 2.61 Coordinate System used in Masonry Panel 

 

 

It must be noted that the geometry of masonry has to be modeled with reference to 

the above figure in which the presented axes are the same as the element local axes 

of the MIDAS program. Accordingly, it is recommended that the gravity direction 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

280 

be parallel with the element local y direction of the MIDAS program. This is 

because the homogenization is performed on the local x-y plane. So the generated 

orthotropic material properties are also based on the axis system. Since the 

homogenization is performed only in the local x-y plane, the stiffness in each 

direction differs from each other. It should be also noted that the global axis system 

of the MIDAS program has no effect on the masonry model. For clarity, the local 

axes of a three-dimensional masonry structure is shown in Figure 2.61(b). 

 

  Criteria for Failure for Constituents 

 
Failure of masonry can be based on the micromechanical behaviour.  At every 

loading step, once the equivalent stresses/strains in the masonry structure are 

calculated, stresses/strains of the constituent materials can be derived on the basis 

of the structural relationship in eq. (5). The maximum principal stress is calculated 

in each constituent level (i.e., Brick, Bed joint, and Head joint) and is compared to 

the tensile strength defined by the user. If the maximum principal stress exceeds 

the tensile strength at the current step, the stiffness contribution of the constituent 

to the whole element is forced to become ineffective. For the nonlinear stress-strain 

relation of constituents, even the elastio-perfectly plastic relation could be 

simulated. This can be numerically implemented by substituting the stiffness of the 

constituent with very small value as               (where the subscript ‘i’ could be brick, 

bed joint, or head joint). If the user sets the ‘Stiffness Reduction Factor’ as very 

small value, the masonry model will behave nonlinearly. By the same reason, if the 

‘Stiffness Reduction Factor’ is set to be a unit value, the masonry model will 

behave elastically (refer to the Figure 2.62 below). 

 

 
Figure 2.62 Stress-Strain of a constituent of masonry model 

 

In this way, the local failure mode can be evaluated. For better understanding of 

this kind of equivalent nonlinear stress-strain relationship theory, see Lee et 

al.(1996). Once cracking occurs in any constituent material, the effect is smeared 

onto the neighboring equivalent orthotropic material through another 

iE zero
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homogenization. 

Although there are a number of criteria for the masonry model such as Mohr-

Coulomb and so on, the masonry model in MIDAS currently determines the tensile 

failure referring only to the user-input tensile strength. More advanced failure 

criteria are developed in the near future based on the abundant research. After the 

tensile cracks occur, the crack positions can be traced by post processor of solid 

stresses. 

 

  Analysis methods of masonry structures 

 

For the performance assessment of masonry structure, it is generally suggested that 

the structure needs to be analyzed in both out-of-plane damage and in-plane 

damage concepts.  

 

Firstly, referring to the Figure 2.63, the out-of-plane damage which is also called as 

“first-mode collapse” or “local damage” involves any kinds of local failure such as 

tensile failure and partial overturn of masonry wall.  

 

For the precise analysis of out-of-plane damage of masonry structure, part of the 

structure is modeled with detailed finite elements such as material nonlinear 

models and interface elements to simulate discrete mortar cracking, interface 

interaction, shear failure, and etc. This type analysis is numerically expensive and 

difficult to simulate real structural response and is not the case in the masonry 

model of the current MIDAS program.  

 

Secondly, in the reference of Figure 2.64, the in-plane damage which is also called 

as “second-mode collapse” means the structural response to the external loading as 

a whole. MIDAS is providing homogenized nonlinear masonry model for this kind 

of analysis. Tensile cracks in mortar and brick can be traced with a simply defined 

nonlinear masonry material model. It should be noted that the nonlinear behavior 

of masonry structure is very sensitive to the material properties such as tensile 

strength and reduced stiffness after cracking. So proper material properties should 

be carefully defined by thorough investigation and experimental consideration.  
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Figure 2.63 Example of out-of-plane damage mechanism 

 

 

  
Figure 2.64 Example of in-plane damage mechanism  

 

 

It is widely recognized that the satisfactory behavior of masonry structure is 

retained only when the out-of-plane damage is well prevented, and the structure 

shows in-plane reaction as a whole. Although these two types of damage take place 

simultaneously, the separate detailed analyses are conducted for practical reasons. 

 



 
 
 
 

Nonlinear Analysis 

 

283 

  Importance of nonlinear analysis of masonry model 

 

To appreciate the importance of nonlinear masonry model, as shown in Figure 2.65, 

a two story masonry wall is analyzed linearly and nonlinearly. As suggested by 

Magenes8, the wall model with openings is subjected to in-plane simple pushover 

loadings. The model has 6m-width and 6.5m-height and is meshed by eight node 

solid elements.  

Firstly, the model is analyzed linearly, which means the stiffness reduction factor is 

set to be a unit value, ‘1’. And then, for nonlinear behavior, the stiffness reduction 

factor is reduced to a very small value of ‘1.e-10’, which leads to elasto-plastic 

behavior. The horizontal forces are loaded incrementally over 10 steps, and the 

cracked deformed shape at the step 8 is presented in Figure 2.66. The marked 

points are representing crack points, and the contour results are based on effective 

stress results.  

In both cases, two models have the same homogenization procedure. The only 

difference is the reduced stiffness of a constituent at which the crack took place. 

The force-displacement result shown in Figure 2.67 gives that the analytic behavior 

is significantly dependent on the stiffness of the masonry constituents after 

cracking. The deformation is extracted from the nodal results of the top right point.   

 

 
Figure 2.65 Two story masonry wall model   
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Figure 2.66 Cracked and deformed shape at step 8  
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Figure 2.67 Force-deformation results  
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In the reference of Figure 2.68, the significance of nonlinearity is more convincing 

if we consider the resultant base shear results. In the Figure 2.68, the horizontal 

axis shows the pier positions, and the vertical axis represents the resultant shear of 

each pier divided by the total shear force. In the left pier, the base shear result of 

the nonlinear masonry model is almost half of that of the linear masonry model.  

On the contrary, in the right pier, the resultant base shear of the nonlinear model is 

almost twice that of the linear masonry model. Also, the overall shear force 

distribution is quite different. The linear masonry model shows symmetric force 

distribution about the mid pier. In the nonlinear masonry model, however, the right 

pier has the largest shear force results. From this consideration, it should be noted 

that the shear forces after crack are shared not by elastic stiffness but by the 

strength capacity as suggested by Magenes (2006).   
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 Figure 2.68 Base shear force distribution 
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 Orthotropic Properties of Masonry based on Strain Energy Rule 

 

Orthotropic material properties of masonry can be derived employing a strain 

energy concept, and the details are given in the following. It is noted that 

homogenization is performed between brick and bed joint first. Similar details can 

also be obtained when brick and head joint are homogenized first. 

 

 

 

Referring to Figure 2.61a), volume fraction of brick and bed joint can be described 

as 

 

;         
bj

b bj

bj bj

th

h t h t
  

 
          (6) 

 

where subscript b and bj represent the brick and bed joint respectively. If the  

brick and bed joint are homogenized in the beginning, the following stress/strain  

components in the sense of volume averaging can be established: 

 

 

 

, , , , ,

, , , , ,

T

xx yy zz xy yz zx

T

xx yy zz xy yz zx

      
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


                (7)  

 

where, 

 
2

1

1
xx xxi i

Vi
i

dV
V

 

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          (8) 

2

1

1
xx xxi i

Vi
i

dV
V

 


 
         (9) 

 

and i=1 for brick, i=2 for bed joint. For each strain component, 
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       (10) 

 

Now the strain energy for each component and 1 layer prism can be denoted as 

 

 

 

2

1

1

2

1

2

re xxi xxi yyi yyi zzi zzi xyi xyi yzi yzi xzi xzi i
Vi

i

e xx xx yy yy zz zz xy xy yz yz xz xz
V

U dV

U dV

           

           



     

     

 


   (11) 

 

where ‘re’ and ‘e’ represent the component and layer prism respectively, and it is  

obvious that 

 

re eU U
                      (12) 

 

Introduce auxiliary stresses/strains, 
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and 
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then, from eqs. (8) & (13), 
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and 
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where, 1  and 2  represent the volume fraction of brick and bed joint 

respectively. 

 

From eqs. (10),(14) & (16), 

 

 

2

2

1
2 2

1

1

x

bj zy zy bjb b
b bj

y b bj z b z bj

z

i

ixy xyi

i

iyz yzi

xz xzi

i

xy

xz

zy

E

E E E E E E E

E

G G

G G

G G






    
 













 









 



 

  
         

   

 







 



 







  (17) 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

290 

where, 
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and the relationship below can also be established. 

 

y
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       (19) 

 

For the system of masonry panel, the homogenization is applied to the layered 

material and head joint based on the assumption of continuous head joint. Now, 

volume fractions of the constituent materials are 
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where, subscript eq and hj represent layered material and head joint respectively.  

As in the previous case, the following stress/strain components in the sense of 

volume averaging can be established: 
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Introducing auxiliary stresses/strains, 
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where, i=1 & i=2 represent the layered material and head joint respectively. 

Following the same procedure and defining the following coefficients, 
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the orthotropic material properties of the masonry panel are finally derived. 
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  STRUCTURAL RELATIONSHIP OF MASONRY 

 

Structural relationship of each constituent material with respect to the overall 

masonry can be established through utilizing auxiliary stress/strain components 

introduced in Appendix I. Details of each relationship are now deduced. 

 

As in eq. (5), the structural matrix has the following form: 

 

 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S
S

S

S

S

 
 
 
 

  
 
 
 
       (26) 

 

Solving the auxiliary stress/strain components in eqs. (22) & (23), 
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where, 
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Therefore, 
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The above equation can be rewritten as follows: 
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where, 
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Using the same procedure, the remaining non-zero coefficients can also be derived. 
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Solving for the unknowns A, B, C and D in eqs. (13), (14), (22) and (23), the 

structural matrix for each component can be derived, and the full details will be 

omitted.2 

 
 
 

 

  

 

                                                 
1 J. S. Lee, G. N. Pande, et al., Numerical Modeling of Brick Masonry Panels subject to Lateral Loadings, Computer & Structures, 

Vol. 61, No. 4, 1996.  

2 Tomaževič M., Earthquake-resistant design of masonry buildings, Series on Innovation in Structures and Construction, Vol. 1, 

Imperial College Press, London, 1999. 

3 Calderini, C., Lagomarsino, S., A micromechanical inelastic model for historical masonry, Journal of Earthquake Engineering (in 

print), 2006. 

4  Magenes G., A method for pushover analysis in seismic assessment of masonry buildings, 12th World Conference on Earthquake 
Engineering, Auckland, New Zealand, 2000.  

5 G. N. Pande, B. Kralj, and J. Middleton. Analysis of the compressive strength of masonry given by the equation 

   k b mf K f f
 

 . The Structural Engineer, 71:7-12, 1994. 

6 G. N. Pande, J. X. Liang, and J. Middleton. Equivalent elastic moduli for brick masonry. Comp. & Geotech., 8:243-265, 1989. 

7 R. Luciano and E. Sacco. A damage model for masonry structures. Eur. J. Mech., A/Solids, 17:285-303,1998. 
8 Guido Magenes, Masonry Building Design in Seismic Areas: Recent Experiences and Prospects from a European Standpoint, 

First European Conference on Earthquake Engineering and Seismology, Paper Number:  Keynote Address K9, Geneva, 

Switzerland, 3-8 September, 2006. 
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Moving Load Analysis for Bridge Structures 

 
The moving load analysis function in midas Civil is used to statically analyze 

and design bridge structures for vehicle moving loads. Important features are 

included as follows: 

 

Generation of influence line and influence surface for displacements, 

member forces and reactions due to moving loads 
 

Calculation of maximum/minimum nodal displacements, member forces 

and support reactions for a given moving vehicle load using the 

generated influence line and influence surface 
 

Moving load analysis of a bridge structure entails a series of analyses for all loading 

conditions created along the entire moving load path to find the maximum and 

minimum values, which are used as the results of the moving load case.  

 

In order to carry out a moving load analysis, we define vehicle loads, traffic lanes or 

traffic surface lanes and the method of applying the vehicle loads, and then we apply a 

unit load at various points to traffic lanes or traffic surface lanes to calculate influence 

line or influence surface. 

 

An Influence line is presented on the traffic lane and represents a specific 

component of analysis results obtained from static analyses of a bridge structure 

subjected to a unit load moving along the traffic lane. An influence surface 

represents a specific component of analysis results obtained from static analyses 

of the traffic lane plane of a bridge structure subjected to a unit load located at 

the plate element nodes and is presented on the points of load application. The 

components of results that can be calculated for influence lines or influence 

surfaces include nodal displacements of the structural model, member forces for 

truss, beam and plate elements, and support reactions. 

 

An analysis procedure for a vehicle moving load using influence lines or 

influence surfaces can be summarized as follows: 

 

1. Define vehicle loads, method of applying the moving loads and traffic lanes 

or traffic lane surfaces. 

2. Calculate influence lines or influence surfaces for each component by 

performing static analyses for unit loads that are generated by the traffic 

lane or traffic surface lane.  

3. Produce the analysis results due to the vehicle movement using influence 

line or influence surface according to the moving load application method. 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

298 

The analysis procedure described above produces the maximum and minimum 

values for one moving load condition, and they can be combined with other 

loading conditions. The load combinations are performed separately for both 

maximum and minimum values. The analysis results include nodal 

displacements, support reactions and member forces for truss, beam and plate 

elements. In the case of other types of elements, only the stiffness is considered 

in the analysis, but the analysis results are not produced. 

 

The unit load used in a vehicle moving load analysis for influence line or 

influence surface is applied in the negative Z-direction of the GCS. An unlimited 

number of moving load conditions can be specified. 

 

Influence line and Influence surface analyses cannot be performed at the same 

time. Table 2.2 presents some features and applications of the two analyses. 

 

 

Description Influence line analysis Influence surface analysis 

Applications- 

Bridge behaviors governed by  

main girders or 2-dimensional  

elevation analysis of bridge  
(steel box girder bridge, etc.) 

Large variation of structural  

behaviors under moving loads in 

the transverse direction (slab  
bridge, rigid frame bridge, etc.) 

Display of Influence  

analysis results- 

Influence line presented along  
the traffic lane elements  

(beam elements) 

Influence surface presented on  
the traffic surface lane elements  

(plate elements) 

Analysis components- 
Nodal displacements, support  

reactions, member forces 

Nodal displacements, support  

reactions, member forces 

Element types for  

analysis- 

Truss, beam, plate elements  
(For other elements, only their  

stiffness are contributed to analysis) 

Truss, beam, plate elements  

(For other elements, only their  

stiffness are contributed to  
analysis) 

Method  

of  

applying  

loads 

Wheel loads  
and traffic lane  

concentrated loads 

Applied as a concentrated load on  
the traffic lane elements  

(beam elements) 

Applied as a concentrated load on  

the nodes constituting a traffic lane 

Uniform traffic 

 lane loads 

Applied as a uniform load on  

the traffic lane elements  

(beam elements) 

Applied as a pressure load on the  

traffic surface lane elements  

(plate elements) 

 

Table 2.2 Features and applications of influence line and influence surface analyses 
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An influence line is calculated by applying a unit load (vertical load or torsional 

moment) along the traffic lane. Influence lines can be produced for nodal 

displacements, member forces and reactions of all nodes, truss, beam and plate 

elements, and supports included in the model. 

 

An influence surface is calculated from the analysis in which a unit load (vertical 

load) is applied to the nodes constituting plate elements in a traffic surface lane. 

 

Using the influence line or surface results, midas Civil calculates the maximum 

and minimum design values of nodal displacements, support reactions and 

member forces for truss, beam and plate elements based on AASHTO 1 , 

Caltrans 2 , AREA 3  or user-defined vehicle live loads. In the case of beam 

elements, maximum and minimum axial forces and moments about strong and 

weak axes are produced along with the corresponding internal forces.  

 

midas Civil applies vehicle loads considering all possible loading conditions 

including bi-directional traffic loading and eccentric torsional loading conditions 

for multiple traffic lanes and traffic surface lanes. It also considers individual 

impact factors for different spans. It then produces results for the most 

unfavorable loading condition (wheel loads, lane loads, etc.). 

 

If elements other than truss, beam and plate elements (plane stress elements, 

solid elements, etc.) are included in the analysis model, their stiffnesses are 

utilized, but the member forces will not be produced. This limitation is imposed 

to reduce the data space and calculation time required for analysis. When vehicle 

loads are specified in an analysis, the same number of loading conditions equal 

to the number of loading points are generated in the program.  

                                                 
1. ASSHTO, Standard Specifications for Highways Bridges, The American Association of State Highway and 

Transportation Officials, Inc in USA. 

2. Caltrans, Bridges Design Specifications Manual, State of California, Department of Transportation in USA. 

3. AREA, Manual for Railway Engineering, American Railway Engineering Association in USA. 
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The procedure for using the moving load analysis is as follows: 

 

1. Model the structure by using (tapered) beam elements for traffic lanes or 

plate elements for traffic surface lanes.  

 

2. Arrange traffic lanes or traffic surface lanes in the structural model 

considering the vehicle moving paths, number of design traffic lanes and 

traffic lane width.


 

 

3. Enter the vehicle loads to be applied to the traffic lanes or traffic surface 

lanes. The standard vehicle loads defined in AASHTO or other standard 

database can be used. Alternatively, user-defined wheel loads or traffic 

lane loads can be also specified.


 

 

4. Identify the traffic lanes or traffic surface lanes onto which the vehicle 

loads are to be applied, and enter the loading conditions as per the design 

requirements.


 

 

5. Define the locations of lane supports. The information is used to examine 

one of the requirements specified in various standards such as AASHTO 

which specifies “when the maximum negative moment due to traffic loads 

is calculated at a support in a continuous beam, the spans on each side of 

the support in question shall be loaded with the specified distributed load 

and a concentrated load equivalent to the sum of the distributed load at 

the most unfavorable location.”


 

 

6. Perform the analysis. 

 

7. Combine the analysis results of the vehicle loading condition and other 

static or dynamic loading conditions. 

 

If only influence line or influence surface analysis is of interest, only the first 

two steps need be considered. The step 5 above need not be considered if you 

choose not to consider the requirement. 

Refer to “Load>  

Moving Load Analysis 

Data>Traffic Line Lanes, 

Traffic Surface Lanes”  

of On-line Manual. 

Refer to “Structure 

Analysis>Moving Load 

Analysis>Vehicles” 

of Main menu. 

Refer to “Structure 

Analysis> Moving Load 

Analysis> Vehicle 

Classes, Moving Load 

Cases” of Main menu. 

Refer to “Structure 

Analysis>Moving  

Load Analysis> 

Lane Supports”  

of Main menu. 
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Traffic Lane and Traffic Surface Lane 
 

Bridge structures should be modeled such that the gravity direction is in the 

negative Z-direction in the Global Coordinate System (GCS).  
 

Vehicle loads are applied to the traffic lanes or traffic surface lanes of a 

structure. Multiple traffic lanes or traffic surface lanes can be placed in the 

direction of the axis of a bridge, considering the number of design traffic lanes 

and design lane width as specified in the design standard. Traffic lanes are 

generally placed parallel with each other or traffic lane elements. Parallel 

placement of traffic lanes and traffic lane elements need not be always 

maintained such as at intersections where two or more roads are intersecting at a 

curved road intersection. 

 

A single line of traffic lane elements can represent a bridge super-structure. 

Alternatively, if a grid model is used, longitudinal members can be modeled as 

lines of traffic lane elements. Plate elements may be used for modeling slab or 

rigid frame bridges as well. 
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Traffic Lane 
 

A traffic lane is typically referred to as its centerline in midas Civil. A traffic 

lane defined in an influence line analysis is located on or at an offset to a line of 

prismatic/non-prismatic beam elements as shown in Figure 2.69. The line of 

beam elements being referenced to identify the traffic lane herein is defined as a 

line of traffic lane elements.


 

 

In a line of traffic lane elements, the i-th (N1) node of an element shall coincide 

with the j-th (or N2) node of the immediately preceding element. If coinciding 

the two nodes is not possible, a gap between two consecutive traffic lane 

elements in the direction of the traffic lane must be minimized as much as 

possible for the accuracy of analysis. For instance, if two or more concentrated 

axle loads are applied along a line of traffic lane elements, and if a gap between 

two consecutive traffic lane elements is farther apart than the longitudinal 

spacing between the axles, some concentrated loads cannot be included in 

analysis. However, gaps in the transverse or perpendicular direction of the traffic 

lane elements hardly affect the analysis results. 

 

The ECS z-axis of a traffic lane element must be parallel or close to parallel with 

the GCS Z-axis, and the ECS x-axis cannot be placed parallel with the GCS Z-

axis. 

 

All the vehicle loads in an influence line analysis are applied to the centerlines of 

traffic lanes and then transferred to the traffic lane elements. If the locations of a 

traffic lane (centerline) and a traffic lane element coincide, only the unit vertical 

load is applied to the traffic lane elements along the traffic lane. Where a traffic 

lane (centerline) is transversely eccentric to a traffic lane element, a unit torsional 

moment is applied to the traffic lane element in addition to a unit vertical load.  

 

An eccentricity is defined as the offset distance between a traffic lane 

(centerline) and a traffic lane element in the perpendicular (local y-axis) 

direction. The signs are determined on the basis of the signs of the torsional 

moments about its local x-axis resulting from the offset vertical loads. A (+) 

eccentricity is attributed to a positive torsional moment.  

 

Eccentricities can be separately defined for each traffic lane element, and as such 

a traffic lane (centerline) can vary relative to the traffic lane elements along the 

line of traffic lane elements. 

 

Once the traffic lanes (centerlines) are specified as shown in Figure 2.69, a unit 

vertical load and a unit torsional moment (if an eccentricity is specified) are 

applied to the traffic lane elements to obtain the influence line. For each traffic 

lane element, the unit point load and torsional moment are applied to the nodal 

ends and the quarter points of the element length. The unit load application 

Refer to “Load>  

Moving Load Analysis 

Data>Traffic line Lanes, 

Traffic Surface Lanes” 

of On-line Manual. 
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sequentially proceeds in the direction from i-th node to j-th node automatically 

in the program. 

 

Since the accuracy of analysis results substantially depends on the distances 

between loading points, a fine division of elements is recommended where 

accuracy is of an essence. 
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(a) Traffic lane elements and traffic lanes (centerlines) layout 

 

 
(b) Sign convention for eccentricity 

 
Figure 2.69 Relationship between traffic lane (centerline), 

traffic lane element and eccentricity 

traffic lane (centerline) with negative eccentricity 

------: traffic lane (centerline) 
——: line of traffic lane elements 

traffic lane (centerline) with 
positive eccentricity traffic lane 

element 

positive torsion about 
ECS x-axis 

traffic lane element vehicle load 

traffic lane 
(centerline) 

vehicle load 

traffic lane 
(centerline) 

negative torsion about 
ECS x-axis 

ECC (negative) 
traffic lane element 

ECC (positive) 
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Traffic Surface Lane 
 

A traffic surface lane is used to define a vehicle-moving range in rigid frame or 

slab bridges where the effect of two-way distribution of moving loads is 

significant. It is composed of traffic surface lane elements and a line of traffic 

lane nodes. The traffic surface lane illustrated in Figure 2.70 is used for an 

influence surface analysis from which a vehicle moving load analysis can be 

performed.


 

 

An influence surface represents a selective component (displacement, reaction, 

member force, etc.) of analysis results shown at the points of unit load 

application on a plane surface. The unit load is applied to all the locations of 

possible loading points. An influence surface retains the same concept of an 

influence line except for the added dimension. Likewise, this is an important 

aspect of moving load analyses. 

 

The definable loading ranges in midas Civil include traffic surface lanes on 

which vehicles travel and plate elements that the user additionally creates for 

influence surface analysis. midas Civil performs a series of static analyses by 

individually applying a vertical unit load to all the plate element nodes included 

in the range of influence surface. It then generates influence surfaces pertaining 

to various components (displacement, reaction and member force). 

 

Traffic surface lane elements define the range of traffic surface lane on which 

vehicles travel. They are identified in the model by lane width, a line of traffic 

lane nodes and eccentricities. Duplicate data entries are permitted. For each 

node, an impact factor relative to the span length (s) can be entered, and 

distributed uniform pressure loads can be specified. 

 

The line of traffic lane nodes and eccentricities constitute the moving line of 

concentrated vehicle loads. A positive eccentricity is defined if the centerline of 

a traffic surface lane is located to the right side of the line of traffic lane nodes 

relative to the axis of the bridge. The opposite holds true for a negative 

eccentricity. The nodes are sequentially entered in the direction of traffic. Using 

the traffic lane width and eccentricity, the line of traffic lane nodes becomes a 

reference line by which traffic surface lane is created.  

 

In addition to the moment resulting from the distributed load, the additional 

negative moment required by the design specifications can be obtained by 

entering the elements contiguous to a support. 

Refer to “Load>  

Moving Load Analysis 

Data>Traffic Surface 

Lanes” of On-line 

Manual. 
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Figure 2.70 Traffic surface lane elements and line of traffic lane nodes 

in a traffic surface lane 

 

 

 

Once the traffic lanes or traffic surface lanes are entered, midas Civil generates 

the influence lines or influence surfaces for the following 5 design variables 

based on the process above: 

 

1. Influence lines or influence surfaces of displacements for 6 d.o.f of all 

nodes in the GCS 
 

2. Influence lines or influence surfaces of reactions for 6 d.o.f of each 

support in the GCS 
 

3. Influence lines or influence surfaces for axial forces of all truss elements 

in the ECS 
 

4. Influence lines or influence surfaces for 6 components of member forces 

of all beam elements (or tapered beam elements) in the ECS at the end 

nodes and quarter points (5 points)  

 

range of loading effect in 
influence surface analysis 

axis of bridge 

centerline of traffic surface lane 

traffic lane node 

eccentricity 
 

traffic surface lane element 

width of traffic lane 

: line of traffic lane nodes 
: zone of traffic lane surface 
: centerline of traffic surface lane 
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5. Influence lines or influence surfaces for 8 components of member forces 

per unit length of all plate elements in the ECS 

 

The above influence lines or influence surfaces are graphically displayed on the 

screen or printed out through the post-processing mode. 

 

Using the influence lines or influence surfaces to calculate the structural 

response due to vehicle moving loads, midas Civil uses linear interpolation for 

zones between the points of load applications. 
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(a) Influence line for shear at point A 

 

 
(b) Influence line for bending moment at point A 

 

(c) Influence line for vertical displacement at point B 

 
(d) Influence line for vertical reaction at support C 

 

Figure 2.71 Influence lines for various components of a cable stayed bridge 
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(a) Influence surface for displacement (Dz) at the center node in left span 

 

 
 

(b) Influence surface for reaction (Fz) at the center node on center pier 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

310 

 
 

Influence surface for moment (Mxx) of center plate element in left span 

 

 
 

Influence surface for shear (Vxx) of center plate element in left span 

 

Figure 2.72 Influence surfaces for various components of a rigid frame bridge 
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Vehicle Moving Loads 
 

midas Civil provides two ways for entering vehicle moving loads.


 

 

1. User-defined wheel loads and traffic lane loads 

2. Standard vehicle loads as per AASHTO, Caltrans, AREA, etc. 

 

The first method enables the user to directly define the design wheel loads and 

lane loads. In order to specify the wheel loads, the design concentrated wheel 

loads and the axle spacings are defined as shown in Figure 2.73. If the spacing 

between the last and the second last axles is not constant, the maximum and 

minimum values of the spacing are entered together at the last entry. 

 

A design traffic lane load consists of a uniform load and concentrated lane loads 

whose locations are variable as presented in Figure 2.74. The concentrated traffic 

lane loads are composed of the loads PLM, PLV and PL. PLM and PLV are used 

to calculate the maximum and minimum moments and the maximum and 

minimum shear forces respectively. PL is applied to all the analysis results 

regardless of moments or shear forces. The distributed load is assumed to act 

over the entire length of the traffic lane. midas Civil adjusts the loading zones so 

that most unfavorable design results can be obtained among all possible 

conditions. Most design specifications do not stipulate simultaneous loading of 

vehicle wheel loads and uniform traffic lane load. Nevertheless, midas Civil 

permits simultaneous loading of these two types if the user so desires. 

 

The second method enables us to use the standard vehicle loads defined in 

various standard specifications by simply selecting vehicle types from the built-

in database contained in midas Civil. The built-in database is presented in Table 

2.3 and the figures below. 

 

 

Specifications Designation for standard vehicle loads 

AASHTO Standard 

H15-44, HS15-44, H15-44L, HS15-44L 

H20-44, HS20-44, H20-44L, HS20-44L, 

AML 

AASHTO LRFD HL93-TRK, HL93-TDM, HS20-FTG 

Caltrans Standard 
P5, P7, P9, P11, P13 

Permit Load (user defined) 

KS Standard Load (Specification for

 Roadway Bridges) 

DB-24, DB-18, DB-13.5, DL-24, DL-18,  

DL-13.5 

KS Standard Train Loads 
L-25, L-22, L-18, L-15,S-25, S-22, S-18,  

S-15, EL-25, EL-22, El-18 & HL 

 
Table 2.3 Types of standard vehicle loads 

Refer to “Load> 

Moving Load Analysis 

Data>Vehicles” 

of On-line Manual. 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

312 

 
Figure 2.73 Definition of concentrated wheel loads 

 

 

 

 

 

 
Figure 2.74 Definition of design traffic lane loads 
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Figure 2.75 DB and DL loads of KS Specifications for Roadway Bridges 
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Figure 2.76 H, HS Vehicle Loads of AASHTO Standard and Alternative Military Load 

H20-44 Truck load 

14' 

18 kips 

32 kips 

H20-44 Truck load 

14' 14'  to  30' 

8 kips 

32 kips 32 kips 

AML Load 

24 kips 24 kips 

variable location 

variable (∞) 

For influence line 

0.640 kips/ft 

18 kips 26 kips 

variable location 

For influence surface 

variable location 

H20-44L or HS20-44L Lane Load 

0.064 kips/ft2 

18 kips 26 kips 

variable location 

variable (∞) 
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18' 

P5 Permit Load 

26 kips 

48 kips 48 kips 

18' 

18' 18' 18' 

P7 Permit Load 

26 kips 

48 kips 48 kips 48 kips 

P9 Permit Load 

18' 18' 18' 18' 

26 kips 

48 kips 48 kips 48 kips 48 kips 

P11 Permit Load 

18' 18' 18' 18' 18' 

26 kips 

48 kips 48 kips 48 kips 48 kips 48 kips 

P13 Permit Load 

18' 18' 18' 18' 18' 18' 

26 kips 

48 kips 48 kips 48 kips 48 kips 48 kips 48 kips 
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Figure 2.77 Caltrans Standard Permit Loads 
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(a) Standard train loads (L load) 

 

 

 
(b) Standard train load (S load) 

 

 

 
(c) HL standard train load (high speed train) 

 
Figure 2.78 KS train loads 

8 ton/m 8 ton/m 

25 ton 25 ton 25 ton 25 ton 

P1 P1 
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(a) Cooper E-80 Train Load 

 

 

 
(b) UIC80 Train Load 

 
Figure 2.79 Other train loads 

 

Figure 2.80 illustrates a permit vehicle, which can be used to represent a special 

purpose vehicle usually used to transport a heavy, wide and long payload (super 

load). The center of the permit vehicle is defined relative to the center of an 

adjacent lane. The direction of the permit vehicle in Figure 2.80 is from right to 

left, and the Eccentricity from the Center of the Reference Lane is to the right 

(positive).   The user can define up to 100 axles and the locations of the 

corresponding wheels. A permit vehicle can be loaded using Moving Load Case. 

 

Along the lines of wheels based on the gages of axles, influence lines are 

internally generated for each wheel line. All the wheel loads are applied in the 

direction of travel on the basis of the influence lines, thereby resulting in 

maximum and minimum values for the moving load case. All the wheels 

carrying a permit vehicle are assumed active at all times. Unlike the standard 

vehicle loads, unloading certain axle loads based on the signs of influence lines 

does not occur.    

 

 

 

 

 

 

 

 

 

40 kips 

4@80 kips 

4@52 kips 
40 kips 

4@80 kips 
4@52 kips 

8 kips/ft 

80kN/m

250kN 250kN 250kN 250kN
80kN/m

0.8m         1.6m               1.6m               1.6m          0.8m: :  1.6m 1.6m 1.6m 0.8m 0.8m 

80 kN/m 

250 kN 

80 kN/m 
250 kN 250 kN 250 kN 
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Figure  2.80 Special Permit Load (user defined) 

 

Once the design traffic loads are specified as described above, they are applied 

in the negative direction of the GCS Z-axis. The maximum and minimum design 

values such as nodal displacements, reactions and member forces are produced 

for the specified moving loads using the influence line or influence surface 

already generated.


 

 

The concept of calculating the design variables by using the influence line or 

influence surface is as follows: 

 

In order to calculate a design variable at a particular location under the 

influence of a concentrated vehicle load, the value of the corresponding 

influence line or influence surface is multiplied by the concentrated vehicle 

load. In the case of a uniform load, the maximum and minimum design 

variables at a given location are found by multiplying the integrated values 

of the influence line or influence surface for positive and negative zones by 

the distributed vehicle load (See Figure 2.81). 

 

Upon defining supports for a distributed load, additional concentrated loads in 

the magnitudes equivalent to the distributed loads on two spans at the most 

unfavorable locations must be simultaneously applied. This is a requirement to 

obtain the maximum negative moment at a support typically stipulated in design 

standards such as AASHTO (See Figure 2.82).
 

 

 

Refer to “Load>  

Moving Load Analysis 

Data>Moving Load 

Cases” of On-line 

Manual. 

Refer to “Load>  

Moving Load Analysis 

Data>Lane Supports” 

of On-line Manual. 
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(a) Calculation of maximum/minimum moments due to a concentrated vehicle load (P) 

 

 

 

 
(b) Calculation of maximum/minimum moments due to a distributed lane load (W) 

 

 
Figure 2.81 Calculation of maximum/minimum design variables due to concentrated 

and distributed loads  

  

P, concentrated vehicle load 

influence line for bending 
moment at point A 

 

maximum positive moment at point A  = P  Imax 

maximum negative moment at point A  = P  Imin 

A # : area of influence line integrated over the corresponding interval 

Influence line for bending moment at point B 

W, distributed lane load 

  

  

maximum positive moment at point B = W  (A2 + A4) 

maximum negative moment at point B = W  (A1 + A3) 
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Figure 2.82 Method of applying lane loads to produce Maximum negative moment  

in a continuous beam 

 

 

If the wheel spacing (axle gage) is to be reflected in moving load analysis, 

Wheel Spacing needs to be defined while defining traffic lanes. If Wheel 

Spacing is defined, influence lines are generated along the wheel lines as shown 

in Figure 2.83, and each individual wheel loads are separately applied in the 

analysis. If Wheel Spacing is zero, a single influence line along the center of a 

vehicle is used. In the dialog boxes for defining traffic lanes, the default value 

for Wheel Spacing automatically changes according to the Moving Load Code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.83  Application of a vehicle load when Wheel Spacing is specified 

concentrated design lane  loads placed at 
the maximum points of influence line to find 
the maximum negative moment 

distributed design lane loads 
placed over the negative (-) 

ranges to find the maximum 

negative moment 

loading condition 

influence line for negative 
momement at support B 

location of maximum negative moment 

influence line in span A-B 

location of maximum negative moment 

influence line in span B-C 
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midas Civil provides 3 ways of applying multiple axle loads for effective 

analysis process. 

 

1. In the first method, individual concentrated loads forming the multiple axle 

concentrated loads are sequentially applied to every point of loading 

application along the traffic lane. When a concentrated load is applied at a 

point of loading application, those remaining concentrated loads that do not 

fall on the points of loading application are calculated on the basis of linear 

interpolation of the influence line or influence surface. The results obtained 

through this method are as accurate as the given influence line or influence 

surface. Since all the concentrated loads are applied to all the points of 

loading application, excessive analysis time is its drawback. This method is 

denoted as ‘E’ (Exact) in the manual (See Figure 2.84). 

 

2. The second method is basically identical to the first method except that the 

concentrated loads are applied at the locations of maximum and minimum 

values in the influence line or influence surface. This method is denoted as 

‘Q’ (Quick) in the manual (See Figure 2.85). 

 

3. The third method is also similar to the first method except that a reference 

concentrated axle load is defined. In this method, only the reference 

concentrated axle load is applied to the points of loading application. The 

reference axle is defined as the axle closest to the center of the vehicle 

load. This method is denoted as ‘P’ (Pivot) in the manual (See Figure 

2.86). 

 

It is recommended that Method 2 be used for preliminary design, and Methods 1 

and 3 be used for final design. 

 

When a group of two or more concentrated loads are applied as a moving 

load condition, bi-directional effects must be considered. Multiple axle loads 

are not generally symmetrical and thus result in different structural 

responses depending on the direction of the moving loads. 

Refer to “Analysis> 

Moving Load Analysis 

Control” of On-line 

Manual. 
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Figure 2.84 Concept of applying concentrated loads as per ‘E’ (Exact) Method 

A moving vehicle load composed of two axle loads  &  

Axle load  applied to the starting point of load application 

Starting point of traffic lane 

point of loading application 

End point of traffic lane 



.
m 
 

Stage 1 

 

 

Axle load  applied between the starting point and the 2nd point  
of loading application 
Axle load  applied to the starting point 

Stage 2 

Axle load  applied to the line 2nd point of loading 
application 
Axle load  applied between the starting point and  
the 2nd point of loading application 

 

 

Stage 3 

Stage 4 

Axle load  applied between the 2nd & 3rd points  
of  loading application 

Axle load  applied to the 2nd point of loading application 

 

 

Last stage 

Axle load  applied 
to the end point 

. 

. 

. 
 

 . 
. 
. 
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Figure 2.85 Concept of applying concentrated loads as per ‘Q’ (Quick) Method 

A moving vehicle load composed of two axle loads  &  

Stage 1 

location of maximum negative moment 

Node  

location of maximum 
positive moment 

influence line 
for moment 

Axle load  applied to the location 
of maximum positive moment  
Axle load  applied next to the 
location of maximum positive 
moment 

Traffic lane 

 

Stage 2 

Axle load  applied to the location 
of maximum positive moment 
Axle load  applied next to  
the location of maximum positive 
moment  

 

 

Stage 3 

Axle load  applied to the location 
of maximum negative moment 
Axle load  applied next to  
the location of maximum negative 

moment 

 

 

Stage 4 

Axle load  applied to the location 
of maximum negative moment 
Axle load  applied next to the 
location of maximum negative 
moment 

 

 
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Figure 2.86 Concept of applying concentrated loads as per ‘P’ (Pivot) Method  

A moving vehicle load composed of two axle loads  &   

if axle load  is reference axle 

Only the reference axle  is sequentially applied to the points of 

loading application, and the remaining axle  is  

applied between the points of loading application. 

Stage 1 

 

 

Stage 2 

 

 

Stage 3 

 

 

Stage 4 

 

 
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Vehicle Load Loading Conditions 
 

To find the most critical design parameters (member forces, displacements and 

support reactions) in the analysis of a bridge structure, all the conditions of 

vehicle loads must be considered. Especially, when a number of design vehicle 

load groups and traffic lanes are involved, all the conditions that may affect the 

design parameters must be examined: a) whether or not the design vehicle load 

groups are simultaneously loaded; b) if only the worst-case design vehicle load 

group is to be applied among the load groups; c) if a specific lane is selected for 

loading the design vehicle load groups; and d) what load reduction factor is to be 

applied if a number of traffic lanes are loaded. 

 

Considering the design conditions noted above, midas Civil produces the 

maximum and minimum design parameters for all possible cases through 

permutations.


 

 

midas Civil requires the following data to generate the maximum and minimum 

design parameters: 

 

Vehicle load classes and loaded traffic lane numbers 

 

Maximum and minimum numbers of traffic lanes that can be loaded 

simultaneously 

 

 Multi-lane scale factors (load reduction factors for loading multiple 

lanes simultaneously) 
 

 Specific input method is used for Permit Load  
 

 

 
(a) Plan 

 

 
(b) Elevation 

 

 
Figure 2.87 Bridge structure model 

Refer to “Load> 

Moving Load Analysis 

Data>Moving Load 

Cases” of On-line 

Manual. 

 

Centerline of 
traffic lane 1 
Centerline of 
traffic lane 2 
Centerline of 
traffic lane 3 
Centerline of 
traffic lane 4 
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The following are examples illustrating the concept of generating loading 

combinations for moving loads: 

 

Example 1. Analysis of a bridge with 4-traffic lanes under AASHTO HS20-44 

truck and lane loads 

 

1. Enter the traffic line lanes (centerlines of traffic lanes). 

From the Main Menu, select Load>Moving Load Analysis Data>Traffic 

Line Lanes to display the Define Design Traffic Line Lanes dialog box as 

shown in Figure 2.88 (a). Click  to define a new traffic line lane in 

the dialog box shown in Figure 2.88 (b). Enter the lane name in the Lane 

Name entry field, select the beam elements and then define the lane by 

entering the eccentricities and impact factors. 

 
Figure 2.88 Define Design Traffic Line Lanes dialog box 

(a) 

(b) 
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2. Enter the vehicle loads.  
From the Main Menu, select Load>Moving Load Analysis Data>Vehicles 

and click  to choose the desired standard and load 

(AASHTO Standard Load is used here). 

 

 
Figure 2.89 Definition of vehicular loads 

 

 

To consider the more critical condition between HS20-44 and HS20-44L, 

the same vehicle load group, Class 1, is used as shown in Figure 2.90. 

(a) 

(b) 
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Figure 2.90 Vehicle load class input 

 

 

3. Enter the method of applying the moving load.  
From the Main Menu, select Analysis > Moving Load Analysis Control to 

choose ‘Exact’ and define the load application method. 

 

 
Figure 2.91 Definition of load application method 
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4. Enter the multi-lane scale factors for lanes loaded concurrently. 

Specify the load reduction factors for multi-lanes from 1 lane to 4 lanes as 

shown in Figure 2.92  below. 

 

 
Figure 2.92 Multi-lane scale factors for lanes loaded concurrently 
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Define the vehicle load cases by specifying the vehicle load classes (groups), 

loaded lanes and the maximum/minimum number of the loaded lanes as shown 

in Figure 2.93.


 

 

 

 
Figure 2.93 Vehicle loading case identifying vehicle load class and traffic lanes 

 

 

 

From the above design conditions, the maximum and minimum design parameters 

are obtained from the most critical values of the total 15 loading conditions, 

which are automatically generated using permutations as shown in Table 2.4. 

Refer to “Load> 

Moving Load Analysis 

Data>Moving Load 

Cases” of On-line 

Manual. 
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Combination 

Number 

Loaded traffic line lane number Multi-lane 

scale factor #1 #2 #3 #4 

1 
HS20-44 or 

HS20-44L 
   1.0 

2  
HS20-44 or 

HS20-44L 
  1.0 

3   
HS20-44 or 

HS20-44L 
 1.0 

4    
HS20-44 or 

HS20-44L 
1.0 

5 
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
  1.0 

6 
HS20-44 or 

HS20-44L 
 

HS20-44 or 

HS20-44L 
 1.0 

7 
HS20-44 or 

HS20-44L 
  

HS20-44 or 

HS20-44L 
1.0 

8  
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
 1.0 

9  
HS20-44 or 

HS20-44L 
 

HS20-44 or 

HS20-44L 
1.0 

10   
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
1.0 

11 
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
 0.9 

12 
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
 

HS20-44 or 

HS20-44L 
0.9 

13 
HS20-44 or 

HS20-44L 
 

HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
0.9 

14  
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
0.9 

15 
HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 

HS20-44 or 

HS20-44L 
0.75 

 
Table 2.4 Load conditions in Example 1 (AASHTO) 

“HS20-44 or HS20-44L”  

indicates that CIVIL 

produces more critical 

maximum/minimum 

design parameters  

of the two loading 

conditions. 



 
 
 
 

Moving Load Analysis for Bridge Structures 

 

 

333 

Example 2. Using the model of Example 1, a bridge analysis is performed for 

the P13 load applied to a lane and the HS vehicle load of the AASHTO applied 

to one of the remaining lanes, as specified in Caltrans Combination Group Ipw. 

 

1. Define the traffic line lanes (centerlines of traffic lanes) relative to the 

traffic lane elements as in Example 1. 

 

2. As shown in Figure 2.94, enter the vehicle loads and classify them into 

Class 1 (HS20-44, HS20-44L) and Class 2 (P13). 

 

 

 
Figure 2.94 Vehicle loads and vehicle load groups 

 

3. Use the load application method “Exact” as in Example 1. 

 

4. Define the vehicle load cases by specifying the vehicle load classes 

(groups), loaded lanes and the maximum/minimum number of loaded lanes 

as shown in Figure 2.95.


 

 

Refer to "Load> 

Moving Load Analysis 

Data>Moving Load 

Cases"of On-line 

Manual. 
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Figure 2.95 Vehicle loading cases identifying vehicle load classes and traffic lanes 

 

 

 

Caltrans Combination Group Ipw specifies that the P13 load be loaded on a lane 

and the HS load be loaded on one of the remaining lanes. It also specifies that 

the cases without considering the HS load be also examined. Accordingly, the 

HS and P13 loads are separated into Classes 1 and 2 in Step 2. Also, the 

minimum and maximum numbers of loaded lanes are specified as 0 and 1 for the 

HS load and 1 and 1 for the P13 load respectively in Step 4. 

 

From the above design conditions, a total of 16 loading conditions are 

automatically generated using permutations as shown in Table 2.5. 
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Combination 

number 

Loaded traffic line lane number 
Multi-lane 

scale factor 
#1 #2 #3 #4 

1 P13    1.0 

2  P13   1.0 

3   P13  1.0 

4    P13 1.0 

5 P13 
HS20-44 or 

HS20-44L 
  1.0 

6 P13  
HS20-44 or 

HS2044L 
 1.0 

7 P13   
HS20-44 or 

HS2044L 
1.0 

8 
HS20-44 or 

HS20-44L 
P13   1.0 

9  P13 
HS20-44 or 

HS20-44L 
 1.0 

10  P13  
HS20-44 or 

HS20-44L 
1.0 

11 
HS20-44 or 

HS20-44L 
 P13  1.0 

12  
HS20-44 or 

HS20-44L 
P13  1.0 

13   P13 
HS20-44 or 

HS20-44L 
1.0 

14 
HS20-44 or 

HS20-44L 
  P13 1.0 

15  
HS20-44 or 

HS20-44L 
 P13 1.0 

16   
HS20-44 or 

HS20-44L 
P13 1.0 

 
Table 2.5 Load conditions in Example 2 (Caltrans Combination Group Ipw) 

 

When a moving load case is created for a special purpose permit vehicle, data 

entry specific to the characteristics of the load is required. The following process 

is adopted in midas Civil for defining a load case using a permit vehicle. In order 

to account for irregular axle spacing and gages with varying numbers of axles 

“HS20-44 or HS20-44L” 

indicates that MIDAS 

CIVIL produces more 

critical maximum 

/minimum design 

parameters of the two 

loading conditions. 
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and wheels for each axle, independent influence lines are required and 

automatically generated for each longitudinal wheel line. Because of such 

multiple influence lines for a single permit vehicle, the vehicle and the center of 

the vehicle must correspond to a particular moving load case. As such if a permit 

vehicle is to be loaded along the bridge in question at different transverse 

positions, additional moving load cases corresponding to the transverse positions 

need to be created. A permit vehicle and standard vehicles can not be used 

together in a single moving load case. If a permit vehicle and standard vehicles 

need to be placed on the bridge simultaneously, a load case for the permit load 

and a load case for the standard vehicles need to be created, and their results are 

subsequently combined. Because a permit vehicle is defined on the basis of a 

specific vehicle, its loading is not affected by the signs of influence lines for the 

wheel lines. For loading a permit vehicle, the Exact method in Figure 2.96 is 

used. 

 

 

 
 

Figure 2.96 Data input for Moving load case using Permit Vehicle 
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Heat of Hydration Analysis 

 
In a certain concrete structure with considerable mass or where a construction 

progresses rapidly with a number of construction joints, the rate and amount of 

heat generation due to hydration are important. Non-uniform thermal expansion 

and contraction due to heat of hydration and cooling of concrete accompanied by 

changing constraints create undesirable stresses. The stresses may cause 

detrimental cracking in the concrete, thereby reducing its strength and durability. 

 

Heat of hydration analysis thus becomes important when casting mass concrete 

structures. It enables us to predict and control temperature and stress distribution 

within a structure to avoid potential problems. 

 

Mass concrete structures requiring heat of hydration analysis depend on their 

dimensions, shapes, cement types and construction conditions. In practice, 

hydration analyses are normally carried out for slabs or mats in excess of 

800~1000mm in thickness and walls confined at bottom in excess of about 

500mm. 

 

Surface cracking may develop initially due to the temperature difference 

between the surface and center. Through-cracks can also develop as a result of 

contraction restrained by external boundary conditions in the cooling process of 

high heat of hydration. The heat of hydration analysis is largely classified into 

several sub-analyses 

 

It entails temperature distribution analysis for conduction, convection, heat 

source, etc.; change in modulus of elasticity due to curing and maturity; and 

stress analysis for creep and shrinkage. The following outlines the various 

components affecting the analysis. 

 

Heat Transfer Analysis 

 
midas Civil calculates changes in nodal temperatures with time due to 

conduction, convection and heat source in the process of cement hydration. The 

following outlines pertinent items considered in midas Civil and some of the 

main concepts in heat transfer analysis: 

 

 Conduction 
 

Conduction is a type of heat transfer accompanied by energy exchange. In the 

case of a fluid, molecular movements or collisions and in the case of solid, 

movements of electrons cause the energy exchange from a high temperature 
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zone to a low temperature zone. The rate of heat transfer through conduction is 

proportional to the area perpendicular to heat flux multiplied by the temperature 

gradient in that direction (Fourier’s law). 

 

x

T
AκQx



  

 
where, 

xQ  : Rate of heat transfer 

A : Area 

κ  : Thermal conductivity 

T

x




: Temperature gradient 

 

In general, thermal conductivity of saturated concrete ranges between 1.21~ 

3.11, and its unit is kcal/h·m· C . Thermal conductivity of concrete tends to 

decrease with increasing temperature, but the effect is rather insignificant in the 

ambient temperature range. 

 

 

 Convection 
 

Convection is another form of heat transfer whereby heat is transmitted between 

a fluid and the surface of a solid through a fluid’s relative molecular motion. 

Heat transfer by forced convection occurs in the case where a fluid is forced to 

flow on a surface such that an artificial fluid current is created. If the fluid 

current is naturally created by a difference in density due to a temperature 

difference within the fluid thereby inducing a buoyancy effect, the form of heat 

transfer is referred to as a free convection. Because the fluid’s current affects the 

temperature field in this type of heat transfer, it is not a simple task to determine 

the temperature distribution and convection heat transfer in practice. 

 

From an engineering perspective, the heat transfer coefficient, ch  is defined to 

represent the heat transfer between a solid and a fluid, where T represents the 

surface temperature of the solid, and the fluid flowing on the surface retains an 

average temperature T
. 

 

( )cq h T T   

 

The heat transfer coefficient (hc) widely varies with the current type, geometric 

configuration and area in contact with the current, physical properties of the 

fluid, average temperature on the surface in contact with convection, location 

and many others, and as such it is extremely difficult to formulate the 

coefficient. In general, convection problems associated with temperature 
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analyses of mass concrete structures relate to the type of heat transfer occurring 

between the concrete surface and atmosphere. Accordingly, the following 

empirical formula is often used, which is a function of an atmospheric wind 

speed. 

 

5.2 3.2c n fh h h v       (m/sec) 

 

The unit for heat transfer coefficients (Convection coefficients) is 2/kcal m h C  . 

 

 

 Heat source 
 

Heat source represents the amount of heat generated by a hydration process in 

mass concrete. Differentiating the equation for adiabatic temperature rise and 

multiplying the specific heat and density of concrete obtain the internal heat 

generation expressed in terms of unit time and volume. Adiabatic conditions are 

defined as occurring without loss or gain of heat; i.e., as isothermal. 

 

Internal heat generation per unit time & volume ( 3/kcal m h ) 

 

- / 241

24

tg cKαe    

 

Equation for adiabatic temperature rise ( C ) 

 

(1 )tT K e    
 
where, 

T : Adiabatic temperature ( C ) 

K : Maximum adiabatic temperature rise ( C ) 

α : Response speed 

 t : Time (days) 

 

 

 Pipe cooling 
 

Pipe cooling is accomplished by embedding pipes into a concrete structure 

through which a low temperature fluid flows. The heat exchange process 

between the pipes and concrete reduces the temperature rise due to heat of 

hydration in the concrete, but increases the fluid temperature. The type of the 

heat exchange is convection between the fluid and pipe surfaces. The amount of 

the heat exchange is expressed as follows: 
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, , , ,
( - ) -

2 2

s i s o m i m o
conv p s s m P s

T T T T
q h A T T h A

  
   

 
 

 

ph : Convection coefficient of fluid in pipes ( 2/kcal m h C  ) 

sA : Surface area of a pipe (m2) 

s mT  , T : Pipe surface and coolant temperatures ( C ) 

 

 

 Initial temperature 
 

Initial temperature is an average temperature of water, cement and aggregates at 

the time of concrete casting, which becomes an initial condition for analysis. 

 

 

 Ambient temperature 
 

Ambient temperature represents a curing temperature, which may be a constant, 

sine function or time-variant function. 

 

 

 Prescribed temperature 
 

A prescribed temperature represents a boundary condition for a heat transfer 

analysis and always maintains a constant temperature. The nodes that are not 

specified with convection conditions or constant temperatures are analyzed 

under the adiabatic condition without any heat transfer. In a symmetrical model, 

the plane of symmetry is typically selected as an adiabatic boundary condition. 

 

The basic equilibrium equations shown below are used for heat transfer analysis. 

Analysis results are expressed in terms of nodal temperatures varying with time. 

 

qhQ FFFTHKTC  )(  
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iQ QdxdydzNF : Heat load due to Heat Source/Sink 
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 
S

hih dSNhTF : Heat load due to Convection 

 

q qiS
F qN dS  : Heat load due to Heat Flux 

 

where, 
T  : Nodal Temperature 

ρ  : Density 

c  : Specific heat 

xx yy zzk k k : Heat conductivity 

 h : Convection coefficient 

Q  : Rate of heat flow - Quantity of heat penetrating per unit time 

q  : Heat flux – Quantity of heat penetrating a unit surface area per unit time 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

342 

Thermal Stress Analysis 

 
Stresses in a mass concrete at each stage of construction are calculated by 

considering heat transfer analysis results such as nodal temperature distribution, 

change in material properties due to changing time and temperature, time-

dependent shrinkage, time and stress-dependent creep, etc. The following 

outlines some important concepts associated with thermal stress analysis and 

pertinent items considered in midas Civil. 

 

 Equivalent concrete age based on temperature and time & 

Accumulated temperature 
 

Change in material properties occurring from the process of maturing concrete 

can be expressed in terms of temperature and time. In order to reflect this type of 

phenomenon, equivalent concrete age and accumulated temperature concepts 

have been incorporated. 

 

Equivalent concrete age is calculated on the basis of CEB-FIP MODEL CODE, 

and the Ohzagi equation is adopted for calculating accumulated temperature, 

which bases on a maturity theory. 

 

Equivalent concrete age as per CEB-FIP MODEL CODE  

 

]
/)(273

4000
65.13[exp

01 TtT
tt

i

n

t

ieq





 

 

eqt : Equivalent concrete age (days) 

iΔt : Time interval at each analysis stage (days) 

iT(Δt ) : Temperature during at each analysis stage ( C ) 

0T : 1 C  

 

Ohzagi’s equation for accumulated temperature 

 

 



n

i

ii tTtM
1

10)( . 

 
2

i i0.0003(T( t ) 10) 0.006(T( t ) 10) 0.55β         

M: Accumulated temperature ( C ) 

iΔt : Time interval at each analysis stage (days) 

iT(Δt ) : Temperature during at each analysis stage ( C ) 
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 Concrete compressive strength calculation using equivalent  

concrete age and accumulated temperature 
 

ACI CODE 
 

(28)( )c c
eq

t
t

a bt
  


 

a, b: Coefficients for cement classification 

c(28) : 28-day concrete compressive strength 

 

CEB-FIP MODEL CODE 
 

1/ 2

(28)
1

28
( ) exp 1

/
c c

eq

t s
t t

              

     

s : Coefficient for cement classification 

c(28)σ : 28-day concrete compressive strength 

1t : 1 day 

 

Ohzagi’s Equation 
 

(28)( )c ct y  
 

where, 
2y ax bx c  

 

2.389ln 1.0
3.5

M
x

 
 
 

 

 
a, b, c: Coefficients for cement classification 

c(28)
: 28-day concrete compressive strength 

 

KS concrete code (1996) 
 

(91)( )c c

eq

t
t

a bt
  


 

a, b: Coefficients for cement classification 

c(91)
: 91-day concrete compressive strength 
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 Deformations resulting from temperature changes 
 

Thermal deformations and stresses are calculated by using the nodal temperature 

changes at each stage obtained through a heat transfer analysis. 

 

 

 Deformations due to Shrinkage 
 

Additional deformations and stresses develop due to shrinkage after initial 

curing. midas Civil adopts ACI CODE and CEB-FIP MODEL CODE to include 

the shrinkage effects in thermal stress analyses, which reflect the cement type, 

structural configuration and time. 

 

 

 Deformations due to Creep 
 

Additional deformations and stresses develop as a result of sustained stresses in 

concrete structures. midas Civil adopts ACI CODE and CEB-FIP MODEL 

CODE to consider the effects of creep.  

 

 

 

Procedure for Heat of Hydration Analysis 
 

 

1. Select Model > Properties > Time Dependent Material (Creep/Shrinkage) 

and Time Dependent Material (Comp. Strength), and specify the time 

dependent material properties. Link the general material properties and time 

dependent material properties in Model > Properties > Time Dependent 

Material Link. 

 

2. Enter the relevant data required for Heat of Hydration Analysis in the sub-

menus of Load > Hydration Heat Analysis Data. 

 

3. Enter the Integration factor, Initial temperature, stress output points and 

whether or not to consider the effects of creep and shrinkage in Analysis > 

Hydration Heat Analysis Control. 

 

4. Select the Analysis > Perform Analysis menu or click  Perform analysis. 

 

5. Once the analysis is completed, check the results in contours, graphs, animations, 

etc. 
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Figure 2.97 Model of a pier cap of an extradosed prestressed concrete box for Heat of 

Hydration Analysis reflecting the concrete pour sequence 
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Figure 2.98 Heat properties and time dependent material properties dialog box 
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Figure 2.99 Construction Stage dialog box to reflect the concrete pour sequence  

(Element, boundary and load groups are defined.) 
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1st Stage 

 

2nd Stage 

 

3rd Stage 

 
Figure 2.100 Graphs of analysis results for each construction stage  
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Time Dependent Analysis Features 

 

Construction Stage Analysis 
 

A civil structure such as a suspension bridge, cable stayed bridge or PSC (pre-

stressed or post-tensioned concrete) bridge requires separate and yet inter-related 

analyses for the completed structure and interim structures during the 

construction. Each temporary structure at a particular stage of construction 

affects the subsequent stages. Also, it is not uncommon to install and dismantle 

temporary supports and cables during construction. The structure constantly 

changes or evolves as the construction progresses with varying material 

properties such as modulus of elasticity and compressive strength due to 

different maturities among contiguous members. The structural behaviors such 

as deflections and stress re-distribution continue to change during and after the 

construction due to varying time dependent properties such as concrete creep, 

shrinkage, modulus of elasticity (aging) and tendon relaxation. Since the 

structural configuration continuously changes with different loading and support 

conditions, and each construction stage affects the subsequent stages, the design 

of certain structural components may be governed during the construction. 

Accordingly, the time dependent construction stage analysis is required to 

examine each stage of the construction, and without such analysis the analysis 

for the post-construction stage will not be reliable. 

 

midas Civil considers the following aspects for a construction stage analysis: 

 

Time dependent material properties 
Creep in concrete members having different maturities 

Shrinkage in concrete members having different maturities 

Compressive strength gains of concrete members as a function of time 

Relaxation of pre-stressing tendons 

 

Conditions for construction stages 

Activation and deactivation of members with certain maturities 

Activation and deactivation of specific loads at a specific times 

Boundary condition changes 
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The procedure used in midas Civil for carrying out a time dependent analysis 

reflecting construction stages is as follows: 

 

 

1. Create a structural model. Assign elements, loads and boundary conditions 

to be activated or deactivated to each construction stage together as a group. 

 

2. Define time dependent material properties such as creep and shrinkage. The 

time dependent material properties can be defined using the standards such 

as ACI or CEB-FIP, or you may directly define them.


  

 

3. Link the defined time dependent material properties to the general material 

properties. By doing this, the changes in material properties of the relevant 

concrete members are automatically calculated.


 

 

4. Considering the sequence of the real construction, generate construction 

stages and time steps.


 

 

5. Define construction stages using the element groups, boundary condition 

groups and load groups previously defined.


 

 

6. Carry out a structural analysis after defining the desired analysis condition.


 

 

7. Combine the results of the construction stage analysis and the completed 

structure analysis. 

 

 

 

Refer to “Model> 

Properties>Time 

Dependent Material”  

of On-line Manual. 

Refer to “Model>  

Properties>Time 

Dependent Material 

Link” of On-line Manual. 

Refer to “Load> 

Construction Stage  

Analysis Data>Define  

Construction Stage”  

of On-line Manual. 

Refer to “Analysis> 

Construction Stage 

Analysis Control, 

Perform Analysis”  

of On-line Manual. 

Refer to “Load> 

Construction Stage  

Analysis Data>Define  

Construction Stage”  

of On-line Manual. 
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Time Dependent Material Properties 
 

midas Civil can reflect time dependent concrete properties such as creep, 

shrinkage and compressive strength gains. 

 

 Creep and Shrinkage 
 

Creep and shrinkage simultaneously occur in real structures as presented in 

Figure 2.101. For practical analysis and design purposes, elastic shortening, 

creep and shrinkage are separately considered. The true elastic strain in the 

figure represents the reduction of elastic strain as a result of concrete strength 

gains relative to time. In most cases, the apparent elastic strain is considered in 

analyses. midas Civil, however, is also capable of reflecting the true elastic strain 

in analyses considering the time-variant concrete strength gains. 

 

Creep deformation in a member is a function of sustained stress, and a high 

strength concrete yields less creep deformation relative to a lower strength 

concrete under an identical stress. The magnitudes of creep deformations can be 

1.5~3.0 times those of elastic deformations. About 50% of the total creep 

deformations takes place within a first few months, and the majority of creep 

deformations occurs in about 5 years. 

 

 

 
Figure 2.101 Time dependent concrete deformations 
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Creep in concrete can vary with the following factors: 

 

 

1. Increase in water/cement ratio increases creep. 

 

2. Creep decreases with increases in the age and strength of concrete when the 

concrete is subjected to stress. 

 

3. Creep deformations increase with increase in ambient temperature and 

decrease in humidity. 

 

4. It also depends on many other factors related to the quality of the concrete 

and conditions of exposure such as the type, amount, and maximum size of 

aggregate; type of cement; amount of cement paste; size and shape of the 

concrete mass; amount of steel reinforcement; and curing conditions. 

 

 

Most materials retain the property of creep. However, it is more pronounced in 

the concrete materials, and it contributes to the reduction of pre-stress relative to 

time. In normal concrete structures, sustained dead loads cause the creep, 

whereas additional creep occurs in pre-stressed/post-tensioned concrete 

structures due to the pre-stress effects. 

 

If a unit axial stress  =1 exerts on a concrete specimen at the age 0t , the 

resulting uni-axial strain at the age t is defined as 
0( , )J t t . 

 

0 0 0( ) ( ) ( , ) ( , )i ct t t t J t t                   (1) 

 

where, 
0( , )J t t  represents the total strain under the unit stress and is defined as 

Creep Function. 

 

 
(a) Change in stress with time (b) Change in strain with time 

 

Figure 2.102 Definition of creep function and specific creep 
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As shown in Figure 2.102, the creep function 
0( , )J t t  can be presented by the 

sum of the initial elastic strain and creep strain as follows: 

 

0 0

0

1
( , ) ( , )

( )
J t t C t t

E t
               (2) 

 

where, 
0( )E t  represents the modulus of elasticity at the time of the load 

application, and 
0( , )C t t  represents the resulting creep deformation at the age t , 

which is referred to as specific creep. The creep function 
0( , )J t t  can be also 

expressed in terms of a ratio relative to the elastic deformation. 

 

0
0

0

1 ( , )
( , )

( )

t t
J t t

E t


              (3) 

 

where, 
0( , )t t  is defined as the creep coefficient, which represents the ratio of 

the creep to the elastic deformation. Specific creep can be also expressed as 

follows: 

 

0 0 0( , ) ( ) ( , )t t E t C t t               (4) 

0
0

0

( , )
( , )

( )

t t
C t t

E t



             (5) 

 

 

midas Civil allows us to specify creep coefficients or shrinkage strains calculated 

by the equations presented in CEB-FIP, ACI, etc., or we may also directly 

specify the values obtained from experiments. The user-defined property data 

can be entered in the form of creep coefficient, creep function or specific creep. 
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Figure 2.103 Dialog box for specifying user-defined creep coefficients 

 

 

 

The creep function widely varies with the time of load applications. Due to the 

concrete strength gains and the progress of hydration with time, the later the 

loading time, the smaller are the elastic and creep strains. Figure 2.104 illustrates 

several creep functions varying with time. Accordingly, when the user defines 

the creep functions, the range of the loading time must include the element ages 

(loading time) for a time dependent analysis to reflect the concrete strength 

gains. For example, if a creep analysis is required for 1000 days for a given load 

applied to the concrete element after 10 days from the date of concrete 

placement, the creep function must cover the range of 1010 days. The accuracy 

of analysis results improves with an increase in the number of creep functions 

based on different loading times. 
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Figure 2.104 Relationship of time and age of loading to creep function 

 

 

 
Concrete age at the time of 

applying sustained load 
4~7 14 28 90 365 

Creep 

coefficient 

Early strength 

cement 
3.8 3.2 2.8 2.0 1.1 

Normal 

cement 
4.0 3.4 3.0 2.2 1.3 

 
Table 2.6 Creep coefficients for normal concrete 

 

 

 

Shrinkage is a function of time, which is independent from the stress in the 

concrete member. Shrinkage strain is generally expressed in time from 0t  to t . 

 

0 0( , ) ( , )s sot t f t t                (6) 

 

where, so  represents the shrinkage coefficient at the final time; 
0( , )f t t  is a function 

of time; t  stands for the time of observation; and 0t  stands for the initial time of 

shrinkage. 
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 Methods of calculating creep 
 

Creep is a phenomenon in which deformations occur under sustained loads with 

time and without necessarily additional loads. As such, a time history of stresses 

and time become the important factors for determining the creep. Not only does 

the creep in pre-stressed and post-tensioned bridges translate into the increase in 

deformations, but it also affects the pre-stressing in the tendons, thereby affecting the 

structural behavior. In order to accurately account for time dependent variables, a time 

history of stresses in a member and creep coefficients for numerous loading ages are 

required. Calculating the creep in such a manner demands a considerable amount of 

calculations and data space. Creep is a non-mechanical deformation, and as such 

only deformations can occur without accompanying stresses unless constraints 

are imposed. 

 

One of the general methods used in practice to consider creep in concrete 

structures is one that a creep coefficient for each element at each stage is directly 

entered and applied to the accumulated element stress to the present time. 

Another commonly used method exists whereby specific functions for creep are 

numerically expressed and integrated relative to stresses and time. The first 

method requires creep coefficients for each element for every stage. The second 

method calculates the creep by integrating the stress time history using the creep 

coefficients specified in the built-in standards within the program. midas Civil 

permits both methods. If both methods are specified for an element, the first 

method overrides. It is more logical to adopt only one of the methods typically. 

However, both methods may be used in parallel if a time frame of 20~30 years is 

selected, or if creep loads are to be considered for specific elements. 

 

If the creep coefficients for individual elements are calculated and entered, the results 

may vary substantially depending on the coefficient values. For reasonably accurate 

results, the creep coefficients must be obtained from adequate data on stress time 

history and loading times. If the creep coefficients at various stages are known from 

experience and experiments, it can be effective to directly use the values. The 

creep load group is defined and activated with creep coefficients assigned to 

elements. The creep loadings are calculated by applying the creep coefficients 

and the element stresses accumulated to the present. The user directly enters the 

creep coefficients and explicitly understands the magnitudes of forces in this 

method, which is also easy to use. However, it entails the burden of calculating 

the creep coefficients. The following outlines the calculation method for creep 

loadings using the creep coefficients. 
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0 0 0
( , ) ( , ) ( )

c
t t t t t          : Creep strain 

 

0
( ) ( , )

c
A

P E t t t dA    : Loading due to creep strain 

 

0
( )t     : Strain due to stress at time 

0t  
 

0
( , )t t     : Creep coefficient for time from 0t  to t  

 

The following outlines the method in which specific functions of creep are 

numerically expressed, and stresses are integrated over time. The total creep 

from a particular time 0t  to a final time t  can be expressed as an (superposition) 

integration of a creep due to the stress resulting from each stage.  

 

0
0 0 00

0

( )
( ) ( , )

t

c

t
t C t t t dt

t


 




             (7) 

where, 

( )c t : Creep strain at time t 

0 0( , )C t t t : Specific creep  

0t : Time of load application 

 

If we assume from the above expression that the stress at each stage is constant, 

the total creep strain can be simplified as a function of the sum of the strain at 

each stage as follows: 

 
1

,

1

( , )
n

c n j j n j

j

C t t 






               (8) 

 

Using the above expression, the incremental creep strain 
,c n  between the 

stages 1n nt t   can be expressed as follows:  

 
1 2

, , , 1

1 1

( , ) ( , )
n n

c n c n c n j j n j j j n j

j j

C t t C t t    
 

  

 

                  (9) 

 

If the specific creep is expressed in degenerate kernel (Dirichlet functional 

summation), the incremental creep strain can be calculated without having to 

save the entire stress time history. 
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0( ) /

0 0 0

1

( , ) ( ) 1 i

m
t t

i

i

C t t t a t e
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

               (10) 

0( )ia t : Coefficients related to the initial shapes of specific creep curves at 

the loading application time 0t  

i
 : Values related to the shapes of specific creep curves over a period of time 

 

Using the above specific creep equation, the incremental strain can be rearranged 

as follows:  

 

0 0
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( ) / ( ) /

, 1 1
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t t t t
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Using the above method, the incremental strain for each element at each stage 

can be obtained from the resulting stress from the immediately preceding stage 

and the modified stress accumulated to the previous stage. This method provides 

relatively accurate analyses reflecting the change in stresses. Once we enter 

necessary material properties without separately calculating creep coefficients, 

the program automatically calculates the creep. Despite the advantage of easy 

application, it shares some disadvantages; since it follows the equations 

presented in Standards, it restricts us to input specific creep values for specific 

elements. 

 

This method is greatly affected by the analysis time interval. Time intervals for 

construction stages in general cases are relatively short and hence do not present 

problems. However, if a long time interval is specified for a stage, it is necessary 

to internally divide into sub-time intervals to closely reflect the creep effects. 

Knowing the characteristics of creep, the time intervals should be preferably 

divided into a log scale. midas Civil is capable of automatically dividing the 

intervals into the log scale based on the number of intervals specified by the 

user. There is no fast rule for an appropriate number of time intervals. However, 

the closer the division, the closer to the true creep can be obtained. In the case of 

a long construction stage interval, it may be necessary to divide the stage into a 

number of time steps. 
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 Development of concrete compressive strength  
 

midas Civil reflects the changes in concrete compressive strength gains relative 

to the maturities of concrete members in analyses. The compressive strength 

gain functions can be defined as per standard specifications such as ACI and 

CEB-FIP as shown in Figure 2.105, or the user is free to define one directly. 

midas Civil thus refers to the concrete compressive strength gain curves, and it 

automatically calculates the strengths corresponding to the times defined in the 

construction stages and uses them in the analysis. 

 

The time dependent material properties (creep, shrinkage and concrete 

compressive strength gain) defined in Figure 2.105 can be applied in analyses in 

conjunction with conventional material properties. This linking process is simply 

necessary for the program’s internal data structure.


 

 

 
Figure 2.105 Definition of concrete compressive strength gain curve based on 

standards 

 

Refer to “Model> 

Properties >Time 

Dependent Material 

Link” of On-line Manual. 



 
 
 
 
ANALYSIS FOR CIVIL STRUCTURES 

 

360 

Definition and Composition of Construction Stages 
 

midas Civil allows us to specify construction stages and their compositions in 

detail to reflect the true erection sequence of a construction. This is an extremely 

powerful tool, which can be applied to various construction stage analyses 

related to a number of erection methods for PSC (pre-stressed and post-tensioned 

concrete) structures and the installation and removal of temporary structures. It 

also permits inverse analyses of long span structures such as suspension and 

cable stayed bridges and heat of hydration analyses reflecting sequential 

concrete pours. 

 

The following are the contents included in each construction stage: 

 

 

1. Activation (creation) and deactivation (deletion) of elements with certain 

maturities (ages) 
 
2. Activation and deactivation of loadings at certain points in time 

 
3. Changes in boundary conditions 

 

 

The concept of construction stages used in midas Civil is illustrated in Figure 

2.106. Construction stages can be readily defined by duration for each stage. A 

construction stage with ‘0’ duration is possible, and the first and last steps are 

basically created once a construction stage is defined. Activation and 

deactivation of elements, boundary conditions and loadings are practically 

accomplished at each step. 
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Figure 2.106 Concept of construction stages 

 

 

 

Activation and deactivation of changing conditions such as new and deleted 

elements, boundary conditions and loadings basically take place at the first step 

of each construction stage. Accordingly, construction stages are created to reflect 

the changes of structural systems that exist in a real construction relative to the 

construction schedule. That is, the number of construction stages increase with 

the increase in the number of temporary structural systems. 

 

Structural system changes in terms of active elements and boundary conditions 

are defined only at the first step of each construction stage. However, additional 

steps can be defined within a given construction stage for the ease of analysis to 

reflect loading changes. This allows us to specify delayed loadings representing, 

for instance, temporary construction loads while maintaining the same geometry 

without creating additional construction stages. 

 

If many additional steps are defined in a construction stage, the accuracy of 

analysis results will improve since the time dependent analysis closely reflects 

creep, shrinkage and compressive strengths. However, if too many steps are 

defined, the analysis time may be excessive, thereby compromising efficiency. 

Moreover, if time dependent properties (creep, shrinkage and modulus of 

elasticity) are not selected to participate in Analysis>Construction Stage 

0 10 20 30 40 (day) 
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conditions 

and loadings 

 
Activation & 
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loadings 
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Analysis Control Data and the analysis is subsequently carried out, the analysis 

results do not change regardless of the number of steps defined. 

 

Subsequent to activating certain elements with specific maturities in a 

construction stage, the maturities continue with the passage of subsequent 

construction stages. The material properties of the elements in a particular 

construction stage change with time. midas Civil automatically calculates the 

properties by using only the elements’ maturities based on the pre-defined time 

dependent material properties (Model>Properties>Time Dependent Material). 

We are not required to define the changing material properties at every 

construction stage. 

 

If two elements are activated with an identical maturity in an identical 

construction stage, the elapsed times for both elements are always identical. 

However, there are occasions where only selective elements are required to pass 

the time among the elements activated at the same time. This aging of selective 

elements is accomplished by using the time load function (Load>Time Loads 

for Construction Stage). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.107 FCM construction stages and modeling 

 

 

When specific elements are activated in a construction stage, the corresponding 

maturities must be assigned to the elements. Creating elements with ‘0’ maturity 

represents the instant when the fresh concrete is cast. However, a structural analysis 

model does not typically include temporary structures such as formwork/falsework, 

and as such unexpected analysis results may be produced if the analysis model 

(a)Construction stage 1 (duration: 7days) 

(c)Analysis model 1 (c)Analysis model 2 

Element a Element a 

(b) Construction stage 2 (duration: 7days) 
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includes immature concrete elements. Especially, if elements of ‘0’ maturity are 

activated, and an analysis is carried out reflecting the time dependent 

compressive strength gains, significantly meaningless displacements may result 

due to the fact that no concrete strength can be expected in the first 24 hours of 

casting. A correct method of modeling a structure for considering construction 

stages may be that the wet concrete in and with the formwork is considered as a 

loading in the temporary structure, and that the activation of the concrete 

elements are assumed after a period of time upon removal of the 

formwork/falsework. 

 

Suppose an FCM construction method is envisaged as shown in Figure 2.107 in 

which the element ‘a’ is cast in the first day of the first construction stage. 

Rather than creating the element ‘a’ with ‘0’ maturity in the first construction 

stage, the weights of the temporary equipment, formwork and wet (immature) 

concrete are considered as loads as shown in Figure 2.107(c). The concrete 

element ‘a’ is then defined in the first day of the construction stage 2 with 7-day 

maturity. 

 

If new elements are activated in a particular construction stage, the total displacements 

or stresses accumulated up to the immediately preceding construction stage do not 

affect the new elements. That is, the new elements are activated with ‘0’ internal 

stresses regardless of the loadings applied to the current structure. 

 

When elements are deactivated, and 100% stress redistribution is assigned, all 

the internal stresses in the deactivated elements are redistributed to the remaining 

structure, and the internal stresses of the elements constituting the remaining 

structure will change. This represents loading equal and opposite internal forces 

at the boundaries of the removed elements. On the other hand, if 0% stress 

redistribution is assigned, the internal stresses of the deactivated elements are not 

transferred to the remaining structure at all, and the stresses in the remaining 

elements thus remain unchanged. The amount of the stresses to be transferred to 

the remaining elements can be adjusted by appropriately controlling the rate of 

stress redistribution. This flexible feature can be applied to consider incomplete 

or partial transfer of the stresses in the deactivated elements in a construction 

stage analysis. A typical example can be a tunnel analysis application. In a 

tunnel construction stage analysis, the elements in the part being excavated do 

not relieve the stresses to the remaining support structure all at once. Use of rock 

bolts or temporary supports may transfer the internal stresses of the deactivated 

(excavated) elements gradually to the remaining structures of subsequent 

construction stages. Accordingly, the internal stresses of deactivated elements 

can be gradually distributed to the interim structures over a number of 

construction stages. 

 

If “original” is selected while a boundary condition is activated, the boundary 

condition is activated at the original (undeformed) node location. This is achieved 

internally by applying a forced displacement to the node in the direction opposite to 
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the displacement of the immediately preceding construction stage. Additional 

internal stresses resulting from the forced displacement will be accounted for in 

the structure. Conversely, if the option “deformed” is selected, the node for 

which the boundary condition is to be activated will be located at the deformed 

location as opposed to the initial location. 

 

In a time dependent analysis reflecting construction stages, the structural system 

changes and loading history of the previous stages affect the analysis results of 

the subsequent stages. midas Civil thus adopts the concept of accumulation. 

Rather than performing analyses for individual structural models pertaining to all 

the construction stages, incremental structural and loading changes are entered 

and analyzed for each construction stage. The results of the current stage are 

then added to that of the preceding stage. 

 

If a loading is applied in a construction stage, the loading remains effective in all 

the subsequent construction stages unless it is deliberately removed. Elements 

are similarly activated for a given construction stage. Only the elements pertaining to 

the relevant construction stage are activated as opposed to activating all the necessary 

elements for the stage. Once-activated elements cannot be activated again, and only 

those elements can be deactivated. 

 

The loading cases to be applied in a construction stage analysis must be defined 

as the “Construction Stage Load” type. Even if a number of loading cases exist 

in a construction stage analysis, their results are combined as a single result as 

depicted in Figure 2.108. This is because the nonlinearity of time dependent 

material properties in a construction stage analysis renders a linear combination 

of load cases impossible. A construction stage analysis produces accumulated 

analysis results and the maximum/minimum values as shown in Figure 2.108. 

The results of the construction stage analysis thus obtained can be now 

combined with the results of the conventional load cases. 

 

We often encounter occasions where intermediary construction stages are structurally 

significant enough to warrant full investigation. Some special loadings perhaps related 

to construction activities can be engaged in the analysis. midas Civil allows us to 

specify the “post-construction stage” to an intermediate stage, which can be analyzed 

as if it was the final completed structure. Once a structure pertaining to a construction 

stage is designated as the “post-construction stage”, all general load cases can be 

applied, and various analyses such as time history and response spectrum can be 

carried out. 
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Figure 2.108 Construction stage analysis load combination 
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PSC (Pre-stressed/Post-tensioned Concrete) Analysis 

 

Pre-stressed Concrete Analysis 
 

The behaviors of pre-stressed concrete structures depend on the effective pre-

stress. When a pre-stressed concrete structure is analyzed, the change of tensions 

in pre-stressing tendons must be accurately calculated for a load history through 

every construction stage. Tension losses in Pre-Stressed (PS) tendons occur due 

to many different factors including the tensioning method. 

 

In the case of pre-tensioning, tension losses are attributed to shrinkage and 

tendon relaxation before tensioning and elastic shortening, creep, shrinkage, 

tendon relaxation, loading and temperature after tensioning. 

 

In the case of post-tensioning, tension losses are attributed to frictions between 

tendons and sheaths, anchorage slip, creep, shrinkage, tendon relaxation, loading 

and temperature. 

 

midas Civil reflects the following tension losses for analyzing pre-stressed 

concrete structures: 

 

Instantaneous losses upon release 
 

Time dependent losses after release 

 

midas Civil uses net cross sections for calculating the section properties such as 

cross sectional areas and bending stiffness, which account for duct areas 

deducted from the gross cross sections prior to jacking PS tendons. After 

tensioning, converted sections are used reflecting the tendon cross sections.  

 

The stiffness of the tendons is relatively larger than the concrete, and it results in 

the shift of centroid. The eccentricities of the tendons are then calculated relative 

to the new centroid and their tension forces are calculated. 

 

Rather than modeling PS tendons as truss elements or the like, midas Civil treats 

the tendons as equivalent pre-stressing loads, while the stiffness of the tendons 

are reflected in the section properties as noted above. The tensions in the 

tendons, which are used to calculate the equivalent loads must be based on the 

pre-stress loses at every construction stage caused by various factors.  
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midas Civil adopts the following procedure for analyzing a pre-stressed concrete 

structure: 

 

 

1. Model the structure. 

 

2. Activate (create) construction stages by defining time dependent material 

properties and construction stages followed by defining elements, boundary 

conditions and loadings for each construction stage.


  

 

3. Define the tendon properties; cross sectional area, material properties, 

ultimate strength, duct diameter, frictional coefficients, etc.


  

 

4. Assign the desired tendons to the section and define the tendon placement 

profile.


  

 

5. Define the tensions applied to the tendons and enter the tensions in the 

appropriate construction stages.


  

 

6. Perform the analysis. 

 

 

 

 

Pre-stress Losses 
 

Instantaneous losses after release 
 

1. Anchorage slip 

2. Friction between PS tendons and sheaths 

3. Elastic shortening of concrete 

 

Long-term time dependent losses after release 
 

1. Creep in concrete 

2. Shrinkage in concrete 

3. Relaxation of PS tendons 

Refer to “Analysis>  

Construction Stage  

Analysis Control” 

of On-line Manual. 

Refer to  “Load> 

Prestress Loads > 

Tendon Property”  

of On-line Manual. 

Refer to “Load> 

Prestress Loads >  

Tendon Profile”  

of On-line Manual. 

Refer to “Load> 

Prestress Loads> 

Tendon Prestress 

Loads” of On-line 

Manual. 
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The frictional loss is considered in the post-tensioning but not in the pre-

tensioning. The total losses for both instantaneous and long-term losses normally 

range in the 15~20% of the jacking force. The most important factor for 

calculating the stresses of PSC (pre-stressed & post-tensioned concrete) 

members is the final effective pre-stress force eP  in the tendons reflecting all the 

instantaneous losses and long-term losses. A relationship between iP  and eP  can 

be expressed as follows: 

 

e iP RP  

 

R is referred to as the effective ratio of pre-stress, which is generally R=0.80 for 

pre-tensioning and R=0.85 for post-tensioning. 

 

The following outlines the pre-stress losses considered in midas Civil: 

 

 

 Instantaneous losses 
 

1. Loss due to Anchorage slip 

 

When a PS tendon is tensioned and released, the pre-stress is transferred to the 

anchorage. The friction wedges in the anchorage fixtures to hold the wires will 

slip a little distance, thus allowing the tendon to slacken slightly. This 

movement, also known as anchorage take-up, causes a tension loss in the tendon 

in the vicinity of the anchorage. This phenomenon occurs in both post- and pre-

tensioning, and overstressing the tendon can compensate it. 

 

The loss of pre-stress due the anchorage slip is typically limited to the vicinity of 

the anchorage due to the frictional resistance between the PS tendon and sheath. 

The effect does not extend beyond a certain distance away from the anchorage. 

 

The tendon length setl  in the anchorage zone in Figure 2.109 represents the zone 

in which tension loss is experienced. The length is a function of the friction; if 

the frictional resistance is big, the length becomes shorter and vice versa. If we 

define the anchorage slip as l , tendon cross-section area as pA  and modulus 

of elasticity as pE , the following equation is established. The equation 

represents the shaded area in Figure 2.109. 

 

Area of triangle ( 0.5 setPl ) = p pA E l            (1) 



 
 
 
 

PSC (Pre-stressed/Post-tensioned Concrete) Analysis 

 

 

369 

If we further define the frictional resistance per unit length as p , the pre-stress 

loss P  in Figure 2.109 can be expressed as 

 

2 setP pl                (2) 

 

From the equations (1) and (2) above, we can derive the equation for setl , which 

represents the length of the tendon being subjected to pre-stress loss due to 

anchorage slip. 

 

p p
set

A E l
l

p


               (3) 

 

 

Figure 2.109 shows a linear distribution of tension along the length of the tendon 

for an illustrative purpose. midas Civil, however, considers a true nonlinear 

distribution of tension for calculating the pre-stress loss due to the anchorage 

slip. 

 

 

 

 
Figure 2.109 Effect on pre-stressing force due to anchorage slip 
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2. Loss due to friction between PS tendons and sheaths 

 

In post-tensioning, frictions exist between the PS tendon and its sheathing. The 

pre-stressing force in the tendon decreases as it gets farther away from the 

jacking ends. The length effect and the curvature effect can be classified. The 

length effect, also known as the wobbling effect of the duct, depends on the 

length and stress of the tendon and refers to the friction stemming from 

imperfect linear alignment of the duct. The loss of pre-stress due to the curvature 

effect results from the intended curvature of the tendon in addition to the 

unintended wobble of the duct. Frictional coefficients, μ  (/radian) per unit angle 

and K (/m) per unit length are expressed.  

 

If a pre-stressing force 
0

P  is applied at the jacking end, the tendon force xP at a 

location, l  away from the end with the angular change α  can be expressed as 

follows: 

 

            (4) 

 

In the AASHTO LRFD code, the friction loss is defined as: 

 

 
   where, K = wobble friction coefficient 

 

In the CEB-FIP and Eurocode, the friction loss is defined as: 

 

 
   where, k = unintentional angular displacement  

 

In midas Civil, the user can choose between large K and small k to consider the 

loss due to wobble effect. 

 
 

 

 

 

3. Loss due to elastic shortening of concrete 

 

As a pre-stress force is transferred to a concrete member, the concrete is 

compressed. The length of the concrete member is reduced, and the tendon 

shortens by the same amount thus reducing the tension stress. The characteristics 

of the elastic shortening differ slightly from pre-tensioning to post-tensioning 

although the two methods share the same principle. 
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In the case of a pre-tensioning, an instantaneous elastic shortening takes place as 

soon as the tendon is released from the anchorage abutments, that is, when the 

jacking force is applied. This results in a shorter tendon and a loss of pre-tension. 

As shown in Figure 2.110, the pre-tension (Pj) in the tendon differs from the pre-

stressing force (Pi) applied to the concrete member.  

 

In the case of post-tensioning, pre-stressing is directly imposed against the 

concrete member. The process of elastic shortening is identical to the pre-

tensioning method, but the tension force in the tendon is measured after the 

shortening has already taken place. Therefore, no tension loss occurs as a result 

of elastic shortening in post-tensioning. midas Civil does not consider pre-stress 

loss due to elastic shortening. As such, when a pre-stress force is specified in a 

concrete member where a pre-tensioning method is used, the pre-stress load (Pi) 

must be entered in lieu of the jacking load (Pj). 

 

In a typical post-tensioned member, multiple tendons are placed, stressed and 

anchored in a pre-defined sequence. A series of concrete elastic shortenings 

takes place in the same member, and the pre-stress loss in each tendon changes 

as the pre-stressing sequence progresses. There is no tension loss in the first 

tendon being stressed in Figure 2.111(b). When the second tendon is tensioned 

as shown in Figure 2.111 (c), a tension loss is observed in the first tendon due to 

the subsequent shortening from the second tensioning. Not only does midas Civil 

account for pre-stress loss due to elastic shortening at every construction stage, 

but it also reflects all pre-stress losses due to elastic shortenings caused by 

external forces. 

 

 

 
Figure 2.110 Pre-stress loss due to elastic shortening 

(pre-tensioned member) 
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Figure 2.111 Pre-stress losses in multi-tendons due to sequential tensioning  

(post-tensioned member) 

 

 

 Time dependent losses 
 

Pre-stress losses also occur with time due to concrete creep, shrinkage and PS 

tendon relaxation. midas Civil reflects the time dependent material properties of 

concrete members and calculates the corresponding creep and shrinkage for all 

construction stages. It also accounts for pre-stress losses in PS tendons due to the 

changing member deformation. The pre-stress loss history can be examined for 

each construction stage by graphs. 

 

Stress relaxation in steel, also termed as creep, is the loss of its stress when it is 

pre-stressed and maintained at a constant strain for a period of time. Pre-stress 

loss due to relaxation varies with the magnitude of initial stress, elapsed time in 

which the stress is applied and product properties. midas Civil adopts the 

Magura1) equation for tendon relaxation. 

 

log
1 ( 0.55)s si

si y

f ft

f C f
   ,  where, 0.55si

y

f

f
           (5) 

 

                                                 
1) Magura, D.D., Sozen, M.A., and Siess, C.P., “A Study of Stress Relaxation in Pre-stressing Reinforcement,” PCI 

Journal, Vol. 9, No. 2, April 1964. 

 

First tendon tensioning Second tendon tensioning 
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fsi is initial stress; fs is the stress after loading for a period of time t; fy is ultimate 

stress (0.1% offset yield stress); and C is product-specific constant. C=10 for 

general steel and C=45 for low relaxation steel are typically used. The above 

equation assumes that the stress in the tendon remains constant. In real 

structures, stresses in PS tendons continuously change with time due to creep, 

shrinkage, external loads, etc., and as such the equation (5) cannot be directly 

applied. Accordingly, midas Civil calculates the change in pre-stress loads in 

tendons due to all causes except for the relaxation itself for every construction 

stage and calculates the relaxation loss based on fictitious initial prestress2) for 

each construction stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2) Kan, T.G., “Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed 

Concrete Frames”, ph. D. Dissertation, Department of Civil Engineering, University of California, Berkeley, 

June 1977. 
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Pre-stress Loads 
 

midas Civil converts the pre-stress tendon loads applied to a structure into 

equivalent loads as described in Figure 2.112 below. 

 

 

 
Figure 2.112 Conversion of pre-stress into equivalent loads 

 

 

 

Figure 2.112 illustrates a tendon profile in a beam element. 2-Dimension is 

selected for the sake of simplicity, but the process of converting into equivalent 

loads in the x-y plane is identical to that in the x-z plane. midas Civil divides a 

beam element into 4 segments and calculates equivalent loads for each segment 

as shown in Figure 2.112. The tendon profile in each segment is assumed linear. 

The tension forces ip  and j
p  in the tendon are unequal due to frictional loss. 3 

Concentrated loads (
xp , ym , 

zp ) at each end, i and j, alone cannot establish an 

equilibrium, and hence distributed loads are introduced for an equilibrium. 

Equations (1) and (2) are used to calculate the concentrated loads at each end, 

and Equation (3) and (4) are used to calculate the internal distributed loads. 

 
Straight line assumed 
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midas Civil calculates time dependent pre-stress losses due to creep, shrinkage, 

relaxation, etc. for every construction stage as well as other pre-stress losses due to 

external loads, temperature, etc. First, the change in tension force in the tendon is 

calculated at each construction stage, and the incremental tension load is 

converted into equivalent loads, which are then applied to the element as 

explained above. 
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Bridge Analysis Automatically Considering Support Settlements  

 
To analyze a bridge structure for support settlements in a typical situation, the 

support nodes that are simultaneously undergoing settlements are collected into 

one settlement group. Each support settlement group is defined as a load case 

and analyzed statically. All possible settlement cases are compiled and additional 

combination conditions are created. The final design condition for maximum and 

minimum values is obtained through rigorous comparisons of the results of 

preceding analysis cases and combinations. The typical process described herein 

is extremely cumbersome if not impossible. midas Civil contains a function of 

simplifying such tedious tasks automatically as follows: 

 

1. Individual loading cases are created using the user-defined support 

settlement groups and the corresponding magnitudes. Each settlement 

group is consisted of support nodes experiencing settlements at the same 

time. 

 

2. Static analyses are carried out for each loading case. 

 

3. All possible conditions of support settlements are created, and the analysis 

results are combined to produce maximum and minimum values. 

 

The analysis results produced according to the procedure noted above can be 

combined with the results of other loading cases. The analysis results include 

nodal displacements, support reactions, and the member forces of truss, beam 

and plate elements. Other types of elements included in the analysis model are 

reflected into the total stiffness, but their analysis results are not produced. 

 

The supports with settlements are entered as nodes, and the magnitudes of 

settlements can vary with different nodes. The support settlements occur in the 

GCS Z-axis. The maximum number of settlement groups is limited to 10, but the 

number of support settlements allowed in a settlement group is unlimited.  

Refer to “Load> 

Settlement Analysis 

Data” of On-line 

Manual. 
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Composite Steel Bridge Analysis Considering Section 
Properties of Pre- and Post-Combined Sections 

 
To reflect the change in section properties of a composite bridge, two analyses 

are performed for the pre-combined and post-combined sections. The results of 

the two models are then combined for design. midas Civil contains a function, 

which automates the process as follows: 

 

1. A static analysis for given conditions is carried out based on the user-

defined pre-composite section, and its results are saved.  

 

2. Using the composite section, analyses are carried out for loading 

conditions other than the ones used for the non-composite section. Static, 

dynamic, moving load and support settlement analyses are then performed, 

and its results are saved as well. 

 

The load cases using the pre-composite section are limited to 15 static load cases. 

Refer to “Load> 

Pre-Combined Load 

Cases for Composite 

Section”  

of On-line Manual. 
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Solution for Unknown Loads Using Optimization Technique 

 
In the design of long span structures, we often face a problem where we would 

seek a solution to unknown loading conditions necessary to satisfy a given 

design requirement such as shown in Figure 2.113. midas Civil is capable of 

solving this type of problems using an optimization technique by calculating the 

optimum variables for given constraints and object functions. For constraint 

conditions, Equality and Inequality conditions are permitted. The types of object 

functions include the sum of the absolute values (
1

n

i

i

X


 ), the sum of the squares 

( 2

1

n

i

i

X


 ) and the maximum of the absolute values (
1 2( , ,..., )nMax X X X ). 

 

Figure 2.113 (a) illustrates a problem of finding jack-up loads in a long span 

beam. An artificial moment distribution of the beam or initial displacements in 

the beam may be imposed as a condition.  
 

Figure 2.113 (b) illustrates a problem of finding leveling loads during construction 

in a long span structure in which a specific deformed shape is imposed as a 

condition.  
 

Figure 2.113 (c) illustrates a cable stayed bridge having unknown cable tensions 

under a dead or live load condition. The lateral displacement of the pylon is 

limited not to exceed a specific value, and the vertical displacements at Points B 

and C must be positive (+). 

 

The above problems create equality and inequality conditions, and midas Civil solves 

the problems by the optimization technique.  

Refer to to “Results> 

Unknown Load Factor” 
of On-line Manual. 



 
 
 
 

Bridge Analysis Automatically Considering Support Settlements 

 

 

379 

The following describes the analysis procedure for finding the jack-up loads at 

Points A and B using Equality conditions, as shown in Figure 2.113 (a):  
 

 

1. Apply a virtual (unit) load at the points of and in the direction of the 

unknown jack-up loads as shown in Figure 2.113 (a), one at a time. The 

number of unit load conditions created is equal to the number of the 

unknown loads. 

 

2. Carry out a static analysis for the design loading condition, which is a 

uniformly distributed load in this case.  

 

3. Formulate Equality conditions using the constraints imposed.  
 

1 1 2 2A A AD AM P M P M M    

1 1 2 2B B BD BM P M P M M    

AiM  : Moment at point A due to a unit load applied in the iP  direction 

BiM  : Moment at point B due to a unit load applied in the iP  direction 

ADM  : Moment at point A due to the design loading condition 

BDM  : Moment at point B due to the design loading condition 

AM  : Moment at point A due to the design loading condition and the 

unknown loads 1 2,P P  

BM  : Moment at point B due to the design loading condition and the 

unknown loads 1 2,P P  

 

4. Using linear algebraic equations, the equality conditions are solved. If the 

numbers of the unknown loads and equations are equal, the solution can be 

readily obtained from the matrix or the linear algebra method.  

 
1

1 1 2

2 1 2

A A A AD

B B B BD

P M M M M

P M M M M


     
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The following illustrates an analysis procedure for finding the cable tensions 

using Inequality conditions of the structure shown in Figure 2.113 (c): 

 

 

1. Apply a virtual (unit) load in the form of a pre-tension load in each cable. 

The number of unit load conditions created is equal to the number of the 

unknown tension loads in the cables. 

 

2. Carry out a static analysis for the design loading condition, which is a 

uniformly distributed load in this case.  

 

3. Formulate Inequality conditions using the constraints imposed. 

 

1 1 2 2 3 3 1

1 1 2 2 3 3

1 1 2 2 3 3

0

0

0 ( 1,2,3)

A A A AD A

B B B BD

C C C CD

i

T T T

T T T

T T T

T i

    

   

   

   

   

   

 

 

 

Ai  : Lateral displacement at point A subjected to a unit pre-tension 

loading condition in 
iT  direction 

Bi  : Lateral displacement at point B subjected to a unit pre-tension 

loading condition in 
iT  direction 

Ci  : Lateral displacement at point C subjected to a unit pre-tension 

loading condition in 
iT  direction 

AD  : Lateral displacement at point A subjected to the design loading 

condition 

BD  : Lateral displacement at point B subjected to the design loading 

condition 

CD  : Lateral displacement at point C subjected to the design loading 

condition 

A  : Lateral displacement at point A subjected to the design loading 

condition and the cable tension load 

iT  : Unknown i-th cable tension 
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4. Using the optimization technique, a solution satisfying the inequality 

conditions is obtained. Numerous solutions to the unknown loads 

exist depending on the constraints imposed to the Inequality 

conditions. midas Civil finds a solution to Inequality conditions, 

which uses variables that minimizes the given object functions. midas 

Civil allows us to select the sum of the absolute values, the sum of the 

squares and the maximum of the absolute values of variables for the object 

functions. Weight factors can be assigned to specific variables to control 

their relative importance, and the effective ranges of the variables can be 

specified. 

 

 

Comprehensive understanding of a structure is required to use the above 

optimization technique for finding necessary design variables. Since Equality or 

Inequality conditions may not have a solution depending on the constraints, 

selection of appropriate design conditions and object functions are very 

important. 
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(a) Example of finding the jack-up loads, P1 and P2, that cause moment M1 at point A 

and moment M2 at point B under a given uniform loading condition 

 

 

 

 
Example of finding the leveling loads, P1 and P2, that result in the same vertical 

displacements at points A, D and G, and the same support reactions at supports  

B, C, E and F under a given uniform loading condition 

Design condition: MA = M 1 
MB = M 2 

Unknown design variables: P1, P2 Design load 

Moment diagram 

Design conditions: AZ = DZ = GZ 

RB = RC = Rξ = Rƒ 
 

Unknown design variables: P1, P2 

Design load 
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Example of finding the initial cable tension loads, T1, T2 and T3, that limit the lateral 

displacement at point A less than 
A , and vertical displacements at points  

B and C greater than 0 under a given uniform loading condition 

 
Figure 2.113 Examples of finding unknown loads that satisfy various design conditions 

 

  

 

Cable 

Design conditions:   AX  ≤ A 

BZ  ≥  0 

CZ  ≥  0 
 
Unknown design variables: T1, T2, T3 

Design load 


