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Simultaneous Equation Solver 

The simultaneous equation solver is a method for finding the solution u  of a linear matrix equation in the form 

shown in equation (5.1.1): 

 

Ku = p      (5.1.1) 

 

Simultaneous equation solvers are not only used for linear static structural analysis, but also for all types of 

analysis such as eigenvalue analysis, dynamic analysis, nonlinear analysis, etc. General solvers include the Gauss 

elimination method, direct solver based on the decomposition method, and the iterative solver, which 

converges to a solution that minimizes iterative calculations. Direct solver is generally used for structural 

analysis because it is not affected by the numerical properties of matrices and can find the solution safely. 

However, when the size of the problem increases, the memory capacity and computation amount tend to 

increase rapidly. Hence, the iterative solver is recommended for large problems because it requires relatively 

less memory capacity. However for structural analysis, the iterative solver may not provide the wanted solution 

due to the numerical properties of matrices, and the number of iterative calculations needed to obtain the 

converging solution may be large. FEA NX provides a function that automatically determines the direct solver 

or iterative solver, depending on the size of the problem in question. 

 

In direct solver, the simultaneous equation solution is found in two steps. The first step is matrix decomposition 

and the second step is the forward-backward substitution (FBS) process. The LU  solver, generally used for 

asymmetric matrices, can be applied to matrix decomposition in the following form for the symmetric stiffness 

matrix K obtained in finite element analysis. 

 
T LL u p  or T LDL u p    (5.1.2) 

L  : Lower triangular matrix 

D  : Diagonal matrix 

 

Generally, the matrix decomposition method that includes D  is needed when the stiffness matrix is not 

definitely positive. FEA NX uses the 
T

LL  form matrix decomposition method (Cholesky decomposition 

method) for linear static structural analysis. For eigenvalue analysis or nonlinear analysis, the positive definite 

condition cannot be guaranteed and so, the 
T

LDL  form matrix decomposition method is used. 

 

When applying the direct solver, the sparse matrix needs to be applied appropriately. Generally, the stiffness 

matrix K  generated in finite element analysis is a sparse matrix with multiple '0', and the required memory 
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capacity and computation amount differs greatly depending on how this sparsity is used. Hence, FEA NX not 

only provides the direct solver for general dense matrices that do not use the sparse matrix, but also provides 

the multi-frontal solver, which appropriately uses the sparse matrix to greatly reduce the memory capacity and 

computation amount.  

The multi-frontal solver requires reordering of DOFs to minimize the memory capacity and computation 

amount using the sparse matrix, and matrix decomposition is performed by separating the matrix into multiple 

fronts according to this reordered information. Figure 5.1.1 displays the effective computation order of a 

rectangular mesh generated by DOF reordering. The algorithm used to implement DOF reordering is a recursive 

bisection, and forward substitution is done in the same order as the matrix decomposition whilst backward 

substitution is done in the opposite order. 

 

 
 

The multi-frontal solver used in FEA NX does not assemble and save the stiffness matrix of the entire region 

individually and hence, requires less memory capacity than the general multi-frontal solver. The out-of-core 

analysis function is supported to provide additional hard disk memory automatically during memory shortage 

when solving large problems. 

 

Also, implementation of the multi-frontal solver uses the computation ability of the Graphics Processing Unit 

(GPU) to process calculations. The recent demand for complex problems highlights the importance of the 

simultaneous equation solver performance, which is the core of finite element analysis. The GPU consists of 

multiple computation units (cores) and provide a much higher computational performance than the CPU. The 

GPU is applied to real matrix decomposition, which takes the longest computation time, to provide an overall 

improved computational performance. 

 

1                     2            1          4          1            2                       1

1                     2            1                     1            2                       1

3 3

Figure 5.1.1 Matrix decomposition 
order of multi-frontal solver 
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The iterative solver is a method of reducing the error of the approximate solution through iterative calculations 

and so, it is very important to reduce the convergence error using only a small number of calculations. Generally, 

the number of iterative calculations is determined by the preconditioning method. FEA NX uses the 

SA(smoothed aggregation) AMG(algebraic multi-grid)1 methods which are preconditioning methods that are 

known to be stable, regardless of the element shape. The number of calculations of the AMG method is not 

greatly affected by the number of DOF because it uses a multi-grid, and this method displays stable convergence 

when used on elements that have displacement and rotation nodal DOFs such as shell elements. The multi-grid 

is composed automatically for the iterative solver using the AMG method, and this is created by the 

representative DOFs of the adjacent node set and each node set. 

 

 
 

As explained above, the performance of the direct solver and iterative solver differ on the size of the problem 

and FEA NX provides an automatic selection function to determine the solver. When using the automatic section 

function, the direct solver using the dense matrix is selected for small size problems, the multi-frontal solver is 

selected for medium size problems and the AMG iterative solver is selected for large size problems. 

 

The automatic selection criterion is determined by considering the following points. 

 

► When empirical condition is known : Determined with reference to the number of user input nodes or 

elements 

► When empirical condition is unknown : Determined within the program with reference to the number of 

model DOF and system memory size 

Figure 5.1.2 Example of node set 
for multi-grid composition 
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Eigenvalue Extraction  

Eigenvalue extraction is a fundamental algorithm of normal mode analysis, and the eigenvalue extraction 

problems in normal mode analysis have the following form. 

 

(no summation)i i i   K B 0    (5.2.1) 

K  : Stiffness matrix 

B  : Mass matrix ( M ) when performing normal mode analysis 

 

The eigenvalue extraction method in FEA NX is coupled and changes with the simultaneous equation solver. 

The Lanczos resampling is used for the multi-frontal solver (the default value of the simultaneous equation 

solver), and eigenvalue extraction or direct solver using the dense matrix is used for the dense matrix solver. 

Each method has the following characteristics. 

 

• Lanczos resampling 

► Appropriate for large sized problems. 

► Because the eigenvalue can be omitted, use of the Sturm sequence check option is recommended. 

 

• Direct solver using the dense matrix 

► The performance can suddenly decrease when the number of DOF is around 310  and so, it is appropriate for 

small scale test models. 

► The eigenvalue is not omitted. 

 

Lanczos resampling is a method of finding the approximate eigenvalue using the tridiagonal matrix that arises 

when generating the Krylov subspace 1, 2( ,..., )kspan V V V 1 . For effective eigenvalue calculation, the block 

tridiagonal matrix2 can be used, and because the tridiagonal matrix size is maintined similar to the number of 

eigenvalues, the computation speed is very fast and it is appropriate for large scale problems. However, 

eigenvalue omission can occur and so, it is useful to use the checking option. 

The direct solver using the dense matrix goes through the stiffness matrix decomposition, tridiagonal matrix 

generation and eigenvalue calculation processes. Tridiagonal matrix generation and eigenvalue calculation is 

                                                                 
1 Hughes, T.J.R., The Finite Element Method, Prentice-Hall International, Inc., New Jersey, 1987 
2 Cullum, J. and Donath, W., “A Block Lanczos algorithms for computing the q algebraically largest eigenvalues and a 

corresponding eigenspace of large real symmetric matrices,” Proc. 1974 IEEE Conference on Decision and Control, IEEE 

Computer Society, 1974 
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done for the entire matrix and eigenvalue omission does not occur. However, it is inappropriate for solving large 

size problems. 

 

Eigenvalue computation range 

For normal mode analysis, the number of eigenvalues and its range considers the modal participation factor 

(equation 5.3.1) or modal effective mass (equation 5.3.3), or can be determined with reference to the frequency 

region of interest. If the number and range of eigenvalues is determined, it can be set using the following inputs. 

 

Variable setting ( 1v , 
2v , N input or not input) Eigenvalue range 

Number of 

eigenvalues 

1v , 
2v , N  1 2v v v 

 Maximum N  

1v , not input, N  1v v
 

Maximum N  

not input, 
2v , N  

2v v
 

Maximum N  

not input, not input, N  v   Maximum N  

1v , 
2v , not input 1 2v v v 

 All eigenvalues 

1v , not input, not input 
1v v

 All eigenvalues 

not input, 
2v , not input 

2v v
 All eigenvalues 

not input, not input, not input v   All eigenvalues 

 

The 1v , 
2v  inputs above are the frequency (Hz) in normal mode analysis. 

 

Eigenvalue computation results 

Eigenvectors, which are the results of the eigenvalue problem, satisfy equation (5.2.2), even if its size changes. 

 
( )i i i i i i

i i

a

a

     

 

   



K B K B 0    (5.2.2) 

 

Hence, a method is needed to express the size of the calculated eigenvalue consistently. FEA NX applies the 

eigenvector normalization process such that the following equation is satisfied, depending on the analysis type. 

 

1T

i i  M      (5.2.3) 

 

The eigenvalue calculation algorithm is only an approximate solution, even when the direct solver for the dense 

matrix is used, and its accuracy cannot be guaranteed. Therefore, FEA NX selects the following values as the 

eigenvalue calculation results to check the accuracy of the calculated eigenvalue and eigenvector. 

 

  

Table 5.2.1 Setting the number 
and range of eigenvalues 
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Result article Calculation 

Generalized mass T

i i ib   B
 

Generalized stiffness T

i i ik   K
 

Orthogonality loss 1 1max( , )
T T

i i i i
i

i ik b

   
  

K B

 

Error measure 
i i i

i

i

e
  






K B

K
 

 

  

Table 5.2.2 Calculation results 
excluding eigenvalue and 
eigenvector 
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Effective Mass and Mode 
Superposition 

After calculating the natural frequency, natural period and mode shape using mode analysis, these can be used 

to compute useful information such as modal effective mass or modal participation factor. The i th modal 

participation factor is expressed as 
i and can be calculated as follows: 

 

1
, 1,2,3,4,5,6 (no summation)

(generalized mass)

T

i i

i

T

i i i

m

m

  

 

  



MT

M

  (5.3.1) 

  : DOF direction (1~3 : displacement, 4~6 : rotation) 

 

Here, T  is the matrix that represents the size of the directional stiffness behavior and it is defined for each 

node to have the following property: 

 

10 0

20 0

30 0

4

5

6

1 0 0 0

0 1 0 0

0 0 1 0
,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ez z y y

ez z x x

ey y x x
e

e

e

e

 

    
  

    
     

   
   
   
   
      

  (5.3.2) 

 

0 0 0, ,x y z  represent the center of rotation. FEA NX sets it as an arbitrary node or the center of mass for the entire 

model.  

 

The modal effective mass is also defined for each direction and can be simply calculated using the modal 

participation factor as follows: 

 
2( )eff

i i im m       (5.3.3) 

 

Adding the effective mass for all modes is the same as the mass of the entire model, excluding the nodes that 

have assigned constraint conditions. 
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The mode superposition method can be applied to dynamic response analysis. Mode superposition uses the 

eigenmode found from eigenvalue analysis (instead of directly solving the linear dynamic equilibrium equation) 

to solve the size reduced mode equilibrium equation as shown below:  

 

( ) ( ) ( ) ( )t t t t  Mu Cu Ku f     (5.3.4) 

 

The spatial coordinate system displacement  tu can be expressed as a combination of the modal 

displacement  tξ using the eigenmode shape Φ  as follows: 

 

     1 2, ... Nt t    u Φξ Φ    (5.3.5) 

 

Using this, the dynamic equilibrium equation (5.3.4) can be expressed in the modal coordinate system as follows: 

 

[ ] ( ) [ ] ( ) [ ] ( ) ( )T T T Tt t t t  Φ MΦ ξ Φ CΦ ξ Φ KΦ ξ Φ f    (5.3.6) 

 

Generally when mode superposition is applied, the high order modes are excluded and only partial low order 

modes are used to compose the eigenmode shape Φ  and so, equation (5.3.6) is an approximation of equation 

(5.3.4). Hence, if an insufficient number of eigenmodes is included in the calculation for expressing the actual 

physical displacement, the accuracy of the calculated results can fall greatly. 

 

The mode equilibrium equation (5.3.7) is expressed independently for each mode when the modal damping 

matrix T
Φ CΦ is '0', as shown below:  

 

( ) ( ) ( )i i i i im t k t p t      (5.3.7) 

im   : i th modal mass ip   : i th modal load 

ik   : i th modal stiffness i   : i th modal displacement 

 

Using the mode superposition method above, the equilibrium equation can be reduced to have the same 

number of variables as the number of calculated eigenmodes, and analysis can be performed effectively when 

the mode equilibrium equation is fully separated between modes. 

 

Damping term treatment  

If the modal damping matrix is diagonalized and the coupling removed for the modal equilibrium equation (5.3.7) 

that is reduced using the eigenmode, it can be expressed as a separated form for each mode like equation (5.3.8). 

 

( ) ( ) ( ) ( )i i i i i i im t b t k t p t         (5.3.8) 

ib  : i th modal damping 

3.2 
Mode Superposition 
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Or, it can be expressed as follows. 

 

2 1
( ) 2 ( ) ( ) ( )

ii i i i i i

i

t t t p t
m

          (5.3.9) 

 2i i i ib m    : Modal damping ratio 

  2

i i ik m       : Modal frequency 

 

The modal damping value can be input differently according to the frequency and in this case, the modal 

damping value is added to the modal damping matrix T
Φ CΦ , which is composed of other general damping 

values such as mass-proportional damping, stiffness-proportional damping etc. Hence, modal separation of the 

modal equilibrium equation is possible when the modal damping matrix T
Φ CΦ is a diagonal matrix, and this 

is applicable when the proportional damping coefficient and structural damping is constant for each element 

and when damping elements (spring, damper) do not exist. If not, the coupling between equilibrium equations 

of each mode, due to the un-diagonalized modal damping term, needs to be considered. 

 

Enforced motion 

When enforced motion is given in the mode superposition method, it cannot be applied directly to the modal 

equilibrium equation. FEA NX uses the following processes to apply enforced motion.  

Firstly, the equilibrium equation (5.3.4) is separated into the DOFs with and without enforced motion. 

 

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

             
              

             

M M u C C u K K u f

M M u C C u K K u f
  (5.3.10) 

1u  : Displacement of unconfined DOF 

2u  : Displacement of DOF confined by enforced motion 

1f  : Load acting on unconfined DOF 

2f  : Confining force of DOF confined by enforced motion 

 

Separating the unconfined DOF displacement 1u into the following quasi-static displacement 
1

qs
u and dynamic 

relative displacement y  is as follows: 

 

1 1

1

1 11 12 2

qs

qs 

 

 

u u y

u K K u
    (5.3.11) 

 

Rearranging for the dynamic relative displacement y ,  
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 1

11 11 11 1 11 11 12 12 2

    M y C y K y f M K K M u   (5.3.12) 

 

The damping related terms on the right hand side of the equation were ignored. Applying the mode 

superposition method and expressing the equation using the modal relative displacement    11t ty Φ x  is as 

follows: 

  

 1

11 11 11 11 11 11 11 11 11 11 1 11 11 12 12 2

1

1 1 11 12 2 11

T T T T

qs





                 

    

Φ M Φ x Φ C Φ x Φ K Φ x Φ f M K K M u

u u y K K u Φ x

 (5.3.13) 

 

If the 11K  has singularity because of an existing rigid-body mode in the structure, the singularity can be 

removed by appropriate shifting using the stiffness matrix 
11K  and mass matrix 

11M . 

 

Residual vector 

As explained above, errors can occur due to high order modes that are not included in the eigenmode shape Φ  

when using mode superposition. To reduce such errors, FEA NX uses the residual vector R , which is composed 

perpendicular to the existing eigenmode, for the mass matrix M  and stiffness matrix K .    
 

1( )T R K I MΦΦ F   (5.3.14) 

 

Here, F  is generally composed of the load vector and the damping force is included when a damping element 

exists.  

FEA NX uses the method suggested by Dickens3 etc. to find the augmented mode shapes perpendicular to the 

residual vector R . This is added to the existing eigenmode shape Φ  for applying mode superposition.  

 

  

                                                                 
3 J.M. Dickens, J.M. Nakagawa, and M.J. Wittbrodt, “A Critique of Mode Acceleration and Modal Truncation 

Augmentation Methods for Modal Response Analysis” Computers & Structures, Vol 62, No. 6, 1997, pp. 985-998 
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Section 4 
 
 
 
 
 

Dynamic Response  

FEA NX uses direct time integration and mode superposition to obtain the transient response of the linear 

equation of motion shown in equation (5.3.4). For the direct time integration of linear problems, the implicit 

method is used.  

 

Implicit direct integration  

FEA NX uses the   method ( HHT  )4 suggested by Hilber, Hughes, Taylor for implicit direct integration. The 

HHT   method is a general form of the Newmark method5 and has a controllable numerical damping effect. 

Using this, the high frequency noise can be controlled and it has a 2 order accuracy for time steps, just like the 

Newmark method. The HHT   method uses the following modified dynamic equilibrium equation:  

 
1 1 int, 1 , 1 int, ,(1 )n n n ext n n n ext n

H H                 Ma Cv f f Cv f f 0  (5.4.1) 

 

Here, 1n
a and 1n

v  each represent the acceleration and velocity vector of the 1n  th time step and 

[ 1 3,0]H    is the coefficient that determines the numerical damping effect. When considering the effects 

of non-mechanical strain, such as thermal expansion of the material, and the internal forces due to in-situ stress 

and pore pressure, the internal forces of linear analysis can be expressed as the following equation including the 

product of stiffness matrix and DOF.  

 
int, 1 1 nonmech, 1 int,0n n n    f Ku f f     (5.4.2) 

 

Introducing the time step equation from the Newmark method, the velocity, displacement and acceleration at 

time steps , 1n n  can be expressed using the following relationship:  

 
1 1

1 2 1

(1 )

1
2 (1 2 )

2

n n n n

n n n n n

t

t t

 

 

 

 

      

        

v v a a

u u v a a

  (5.4.3) 

 

Recomposing the equilibrium equation (5.4.1) using equations (5.4.2) and (5.4.3), the following simultaneous 

equation with the displacement at time 1n  as a variable can be obtained as follows: 

                                                                 
4 H.M Hilber, T.J.R. Hughes, and R.L. Taylor, “Improved Numerical Dissipation for Time Integration Algorithms in 

Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol 5, No. 3, 1977, pp. 283-292 
5 M. Newmark, “A Method of Computation for Structural Dynamics,” ASCE Journal of the Engineering Mechanics 

Division, Vol. 5, No. EM3, 1959, pp. 67-94 
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1

2

int,0 , 1 , 1 , ,

2

(1 )1
(1 ) ,

(1 )

1 1 1
1

2

(1 ) (1 )
1 (1 ) 1

2

eff eff

n

eff H
H

eff ext n nonmech n ext n nonmech n

H H

n n n

n nH H
H

t t

t t

t
t

 


 

 

  

    


  



 




   

 

             

  
     

    

    
       

   

K u f

K M C K

f f f f f f

M u v a

C u v
n n

H
 

 
 
a Ku

 (5.4.4) 

 

The right hand side 
eff

f  from equation (5.4.4) is determined by the internal force and calculated displacement, 

velocity, acceleration at time step n . When the right hand side is determined, the displacement vector 1nu at 

1n can be calculated using the simultaneous equation solver explained in the section above. The velocity and 

acceleration at 1n can be obtained by substituting this calculated displacement into the Newmark time step 

equation (5.4.3). The transient response of the structure can be calculated by the time integration that repeats 

the processes outlined above. 

The effective stiffness matrix (
eff

K ) in the left hand side of equation (5.4.4) reuses the once decomposed 

matrix when the time step is kept constant, allowing effective analysis by only repeating the front-back 

substitution process. 

HHT   time integration has unconditional stability when (1 2 ) / 2H   , 2(1 ) / 4H   and when

0H  . It is specialized in to the Newmark method that uses the average acceleration. FEA NX uses a default 

value of 0.05H   . 

 

Damping effect 

FEA NX considers two types of damping: mass-proportional damping and stiffness-proportional damping. 

There is also mode damping, which is only applied for mode superposition as mentioned in section 5.3.2. The 

damping effects in linear time history analysis are applied to the damping matrix C  in the following form: 

 
e e e e

j j j j   C M K B    (5.4.5) 

e

j  : Mass proportional damping coefficient for j th element 

e

j  : Stiffness proportional damping coefficient for j th element 

e

jM  : Mass matrix of jth element 

e

jK
 : Stiffness matrix of jth element 

B  : Damping matrix due to damping element (damper) 
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Application of mode superposition 

To use time integration using mode superposition, the mass in the mode equilibrium equation (5.3.6) is set to '1' 

and rewritten as follows: 

 

2( ) ( ) ( ) ( ) ( )

[ ] [ ]

i
iji j i i i i

T
ij ij ij

p
t C t t p t p t t t

t

C

   


     


 C Φ CΦ

   (5.4.6) 

 

Time integration using mode superposition can be classified into two types, depending on the ductile state of 

the mode damping matrix ijC : 

 

► Uncoupled system 

If the mode damping matrix ijC  is diagonalized and the ductility is removed, the response is analyzed 

independently for each mode and the displacement and velocity of each time step is determined from the 

displacement and velocity of the previous time step using the following equation. The modal integral 

coefficients ia
, ib  at the i th mode can be obtained by finding the particular solution and homogeneous 

solution of (5.4.6) and applying it to the initial condition (displacement and velocity of the previous time step).  

 
1

11 12 11 12

1 1

21 22 21 22

n n ni i i i

i i i

n n ni i i i

i i i

pa a b b

pa a b b

 

 



 

        
         
        

  (5.4.7) 

 

► Coupled system 

If ductility is not removed from the mode damping matrix, the ductility between modes needs to be considered 

and modal analysis cannot be performed independently. In this case, FEA NX separates the mode damping 

matrix into the following diagonal component ( diagC ) and off-diagonal component ( offC ) and treats the damping 

force of the off-diagonal component as an external force for analysis. 

 

diag off C C C     (5.4.8) 

 

In this case, all displacements are independent and the mode velocity is softened to compose the following 

simultaneous equation. If the time step is fixed, it can be solved without extra matrix decomposition, just like 

direct time integration. 

 

1
12 11 12 11 12

1 1
21 22 21 22

220

( ), ( )

T Tn n n n
off off

n nT n

off

i idiag a diag b   



 

                     
             

 

I B C A A B Bξ ξ p C ξ

A A B Bξ ξ pI B C

A B

 (5.4.9) 

 

Initial condition of mode superposition 
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When initial displacement and initial velocity are given, the initial displacement 0

i  and initial velocity 0

i in the 

modal coordinate system is defined as follows. Using all modes gives an equation, and using partial modes gives 

an approximate relationship. 

 

0

0

0

0

1

1

T

i i

i

T

i i

i

m

m

 

 





Mu

Mv

    (5.4.10) 

i  : i th eigenmode shape 

0u
 : Initial displacement 

0v
 : Initial velocity 

 

Frequency response analysis calculates the structural response under a load vibrating at a uniform frequency. 

All loads in frequency response analysis are defined in the frequency domain and expressed as a function of 

excitation frequency. In other words, the load in frequency response analysis can be expressed using the 

following complex harmonic function when the angular excitation frequency is  .  

 

    i tt e f f      (5.4.11) 

 

The response can also be expressed in the same form. 

 

    i tt e u u     (5.4.12) 

 

Using this, the equation of motion is expressed in the following form: 

 

   2 i        M C K u f    (5.4.13) 

 

Here, both the load and displacement are expressed as complex numbers. When expressing the complex value 

using magnitude/phase angle, the magnitude represents the maximum load or displacement within the 

vibration period and the phase angle is the position (angle) at which this maximum value occurs. On the other 

hand, when expressing the complex value using real component/imaginary component, the real component is 

the load or displacement magnitude at the starting point of the vibration period and the imaginary component 

is the load or displacement after 1/4 period ( / 2 ). Hence, the imaginary component changes with the 

vibration period. The relationship between magnitude/phase angle and real component/imaginary component 

is as follows: 

 

2 2

r iu u u   : Magnitude 

4.2 
Frequency Response 
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1tan ( / )i ru u 
 : Phase angle 

cosru u 
 : Real component 

siniu u 
 : Imaginary component 

 

Direct frequency response analysis 

When using the direct solver for direct frequency response analysis, solving the simultaneous equation (5.4.13) 

gives the frequency response  u . If there is no damping, equation (5.4.13) is a real number simultaneous 

equation. But if there is damping, it is a complex number simultaneous equation. The solution can be found 

accurately using the direct method, but calculation is very inefficient for large problems or when many 

frequencies exist because the simultaneous equation needs to be recomposed and solved for each frequency. 

 

Response spectrum analysis is a method of evaluating the structural response due to base motion (uniform 

shaking of nodes confined by the boundary condition), especially earthquakes, and is the most generalized 

method for seismic design. This method assumes a linear system response and only evaluates the maximum 

response. Hence, analysis using time integration outlined in sections 5.4.1 and 5.7 is appropriate for problems 

that have dominant nonlinearity or when results considering the simultaneity of a particular time step are 

important. 

The maximum response is evaluated as a mode combination, which reflects the mode participation rate on the 

modal response corresponding to the predefined spectrum function. Here, because simultaneity of the modal 

maximum response is not considered and the response itself is calculated as a combination, the response 

spectrum analysis results can be seen as an approximate solution for time integration. Hence, if the spectrum 

function is defined for a particular acceleration or particular seismic wave, the response spectrum analysis result 

obtains an approximate maximum value of the linear transient response analysis result for the input acceleration. 

However, the analysis results for seismic design are more generally obtained using the design response 

spectrum, made from the statistical historical seismic waves in a particular region or country.  

 

Modal spectrum response 

The static equilibrium equation for response spectrum analysis is shown in equation (5.3.6), and the maximum 

modal response can be expressed using the spectrum data as follows: 
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   (5.4.14) 

 ,D i iS    : Displacement spectrum data 

 ,V i iS    : Velocity spectrum data 

4.3 
Response Spectrum 
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 ,A i iS    : Acceleration spectrum data 

i  : Participation factor of the i th mode 

 

Substituting equation (5.4.14) into equation (5.3.5) can express the contribution of the maximum modal 

displacement, velocity, acceleration as an equation of spectral data. 
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   (5.4.15) 

 

A point in the spectrum data is defined as the absolute maximum modal response value of the natural period 

(natural frequency), and the effects of the modal damping ratio is included. Because the maximum response of 

each period is very diverse for the response spectrum of a particular acceleration history, it is expressed as a very 

complex graph form. However for the design response spectrum, a simple line combination in log scale as shown 

in figure 5.4.3 is generally used: 
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Modal combination method 

The maximum physical quantities for each mode (maximum value of each displacement, stress, member force, 

reaction force etc. component) is called max

iR
.
 If the actual maximum physical quantity is assumed as the sum of 

the maximum values of each mode, simply adding the maximum values of each mode is sufficient. However, 

because the maximum values of each mode cannot be guaranteed to occur at the same time step, the maximum 

value cannot be found using only simple linear superposition. 

 

Figure 5.4.3 Example of 
acceleration response spectrum  
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     (5.4.16) 

 

Hence, a modal combination method needs to be introduced to evaluate the maximum value approximately. 

Various modal combination methods that consider the superposition characteristics or damping effects have 

been introduced, but because there is no definite method that gives an appropriate value for all cases, the 

characteristics of each modal combination method need to be understood.  

 

► Summation of the absolute value (ABS) 

 

max

max

1

N

i

i

R R


     (5.4.17) 

 

This method assumes that all modal responses have the same phase and judges all absolute maximum modal 

values to occur at the same time. Hence, it provides the largest value. 

 

► Square root of the summation of the squares (SRSS) 
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      (5.4.18) 

 

This method provides appropriate results when each mode is sufficiently separated: 

 

► Naval research laboratory method (NRL) 
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      (5.4.19) 

 

This method removes one mode ( m ) that has the maximum absolute value from the SRSS method, and like the 

SRSS method, this method provides appropriate results when each mode is sufficiently separated. 

 

Because these methods above are effective only when the modes are sufficiently separated and not adjacent, 

the US Nuclear Regulatory Commission (NRC) regulatory guide 1.92(1976) suggests appropriate evaluation 

methods for maximum values when multiple modes are adjacent. 

 

► Ten percent method (TENP)  
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     (5.4.20) 

 

This method includes effects of all adjacent frequency modes within 10% of the SRSS. Here, the frequencies of 

two modes , ( )i j j i are judged to be adjacent within 10% frequency if the following condition is satisfied:  
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     (5.4.21) 

 

► Complete quadratic combination method (CQC)  
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     (5.4.22) 

 

Here, 
ij is the cross-correlation coefficient, which is defined as follows:  
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  (5.4.23) 

ijr  : Frequency ratio  ( /j i  ),
j i   

 

If i j  in equation (5.4.23), 1ij   regardless of the damping ratio. If the damping ratio is '0', 1ij  for all nodes 

and the results are the same as the SRSS results. When the damping ratios of two modes are identical, it can be 

simplified to equation (5.2.24) 
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  (5.4.24) 

 

Sign of modal combination result  

Because modal combination methods are displayed as absolute values of the mode results, all response 

spectrum results always have a positive (+) value. However, for directional results such as reaction force or 

deformed shape, appropriate signs need to be applied. The most general method for determining the sign of 

the combined results is following the sign of the major mode. The major mode is defined as the mode, out of 

the modes that have the largest mass participation rate for each directional component, that has the most 

closest direction to the defined spectrum direction (load direction). 

 

Spectrum data correction  
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Spectrum data is a function form for the natural frequency and modal damping ratio, as shown in equation 

(5.4.14). However, because the user cannot know the frequency before analysis, the spectrum data is defined as 

a table with a constant interval. Hence, the interpolation is used when reading the spectrum value of the 

applicable frequency or period of the structure and linear interpolation on a logarithmic scale, which expresses 

the spectrum response for natural period change, is most generally used. When entering the spectrum data for 

multiple damping ratios, linear interpolation on a logarithmic scale is performed in the same way for the 

structural modal damping ratio.  

However when spectrum data is available for only one damping ratio, there is no data for interpolation and a 

special interpolation method is needed for that single damping ratio. The Japan specifications for highway 

bridges (2002) suggest the following correction factor for the damping ratio: 
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When the damping ratio is '0.05', 1DC   (Point A ) and equation (5.4.25) connotes the correction factor when 

the damping ratio of the spectrum data is '0.05'. Hence, when the damping ratio (
spectrum ) of the spectrum 

data is not '0.05', the ratio of correction factors corresponding to each damping is applied as the final damping 

correction factor, as shown in equation (5.4.26). 
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    (5.4.26) 

 

Figure 5.4.4 Correction factor for 
damping ratio 
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Nonlinear Finite Element Solution 

Nonlinear Finite Element Solution is a method of converging the accumulated incremental solution from 

iterative calculations to the correct solution, and it is processed as shown in figure 5.5.1. 

 

 
 

In the figure, t

extf and t t

ext


f  each represent the external forces at time t  and time t t  , and the solution and 

incremental solution between time t  and time t t   can be expressed as the following relationship:  

 
t t t   u u u     (5.5.1) 

u  : Incremental solution occurring at time increment t   

 

If iterative calculation is performed for nonlinear analysis in the time increment t , the accumulated 

incremental solution is as follows:  
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     u u u u u   (5.5.2) 

iu  : Accumulated incremental solution up to i  th iterative calculation  

1i u  : Incremental solution occurring at 1i   th iterative calculation 
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Figure 5.5.1 Accumulated 
incremental solution and 
nonlinear finite element 
convergence 
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1i u  is calculated from the following linear simultaneous equation using the tangential stiffness matrix 
1iK . 

 
1

1 1i i i 

 u K g     (5.5.3) 

ig  : Residual force, unbalanced force 

 

The unbalanced force 
ig  is expressed as the following difference between external force t t

ext


f  and internal 

force
,int if . 

 

,

t t

i ext int i

 g f f     (5.5.4) 

 

Equations (5.5.2)-(5.5.4) are iterated until it satisfies the user specified convergence criteria, and the 

convergence criteria judges using the change in member force, displacement or energy etc.  

 

Line search 

FEA NX provides the line search function to improve the performance of the basic iterative solutions explained 

above. The fundamental concept of line search is the introduction of a scalar value  during the process of 

adding the calculated incremental solution
1i u to the accumulated incremental solution for improved 

accuracy. In this case, the accumulated incremental solution is calculated as follows:  

 

1 1i i i   u u u     (5.5.5) 

 

Assuming that the calculated 1iu  above satisfies the equilibrium state and uses the principal of stationary 

total potential energy, the line search problem results in finding the   at which the derivative of the total 

potential energy for   is '0'. 

 

1( ) ( ) 0T
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Assuming linear change for the energy derivative ( )s   about  , the   that satisfies equation (5.5.6) is 

calculated as follows: 
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   (5.5.7) 

 

Here, the slopes at which   is '0' or '1' can be expressed as follows:  
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    (5.5.8) 

 

Because the assumptions made for the line search algorithm are not accurately satisfied for the real case, the 

( )s   calculated from equation (5.5.7) is generally not '0'. In FEA NX the processes outlined above are repeated 

until the ( ) / ( 0)js s   value is below the user-specified constant value. 

 

Initial stiffness, Newton Raphson, Modified Newton Raphson 

The iterative methods in nonlinear analysis can be classified into the Initial stiffness, Newton Raphson, Modified 

Newton Raphson methods depending on the calculation point of the tangential stiffness. The Initial stiffness 

method continuously maintains the tangential stiffness calculated at the start point of analysis. The Newton 

Raphson method recalculates the tangential stiffness for each iterative calculation. The Modified Newton 

Raphson calculates the tangential stiffness where a change in external force occurs. Because tangential stiffness, 

matrix calculation, and matrix decomposition requires a long calculation time, using the Initial stiffness and 
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Figure 5.5.2 Conceptual diagram 
of line search algorithm 
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Modified Newton Raphson methods is faster than the Newton Raphson method when problems do not occur in 

the convergence process. FEA NX does not classify the Initial stiffness and Modified Newton Raphson methods 

explicitly. Defining the tangential stiffness recalculation point can give the effects of all iterative methods. 

 

Automatic stiffness matrix recalculation  

It is important to select an appropriate calculation point for tangential stiffness, depending on the characteristics 

of the target analysis model such as nonlinearity, evenness of the converging solution, etc. FEA NX provides the 

automatic tangential stiffness update, which judges an appropriate recalculation point by considering the 

overall characteristics of the nonlinear problem such as convergence characteristics or determination of 

divergence etc., as a nonlinear finite element solution. Tangential stiffness update is performed when the 

following conditions are satisfied: 

 

► When the expected number of iterative calculations is larger than the user defined maximum number 

► When the solution is determined to diverge 

 

Convergence condition 

The convergence of the iterative solution is judged using the force norm, displacement norm and energy norm.   
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Displacement norm ratio 

T

i i

T

i i

 


 

u u

u u
   (5.5.10) 

int,
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u g

u f
   (5.5.11) 

 

For general nonlinear systems, all convergence norms decrease simultaneously as the system converges. 

Particularly, the force norm represents the size of the unbalanced force and has the closest relationship with the 

degree of satisfaction of the nonlinear equation. On the other hand, the displacement norm represents the size 

of the incremental solution and is not appropriate as a single convergence norm for problems with a very large 

local stiffness, such as for systems using the penalty method.  

 

FEA NX compares a single or multiple norms out of these three norms to the user-provided tolerance to 

determine convergence.  

 

Divergence determination and load bisection 

Determining the divergence for a solution is an important criterion used in automatic tangential stiffness update, 

and the divergence rate iE  is determined fundamentally. 
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    (5.5.12) 

 

When the absolute value of the divergence rate is larger than '1' ( 1iE  ), the nonlinear analysis solution is 

judged to have possible divergence and necessary measures are taken on the algorithm, such as recalculation 

of the stiffness matrix or load bisection. 

 

Load bisection is applied when the increment of the current load step is too large to obtain a converging solution, 

such as when the solution diverges or when the number of required iterative calculations is larger than the user 

defined maximum number etc. By restarting the iterative calculation through bisecting the current load 

increment, an inappropriate load increment size can be dealt with flexibly. FEA NX performs load bisection 

automatically until the user defined maximum bisection level is reached. 

 

Automatic time increment adjustment 

To increase the efficiency of nonlinear analysis, FEA NX includes a function that automatically adjusts the time 

increment size as the base of the nonlinear analysis astringency. The fundamental time increment size and 

maximum increment size is determined by the user input. When using the automatic time increment adjustment 

function in nonlinear analysis, the time increment size of a particular time step increases or decreases based on 

the number of iterative calculations needed for convergence in the previous increment step.  

 
1

,max(1 )i i

s s st n t n n        (5.5.13) 

 

Here, the increment adjustment factor ( sn ) is limited to natural numbers to obtain the maximum number of 

nonlinear solutions in the user intended point or load size. The increment adjustment factor has a range from 

the minimum value '1' representing the initial increment, and the maximum value ( ,maxsn ) provided by the user. 

 

Quasi-Newton method 

The quasi-Newton method is a type of nonlinear solution is the generalized form of the secant method. It 

maintains the advantages of the Modified Newton Raphson method, which recomposes the stiffness matrix 

only when a load increment is present, and improves the problem of low astringency. In other words, costs do 

not occur for recomposition during iterative calculation of the stiffness matrix and effective calculation using 

the decomposed stiffness is possible. At the same time, this method can be used to improve the astringency 

and general performance.   

FEA NX uses the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method6, a type of quasi-Newton method. The 

inverse matrix of the stiffness matrix from iterative calculations in nonlinear finite element analysis is adjusted 

by the following BFGS update process.  

                                                                 
6 Matthies, H. and Strang, G., “The solution of nonlinear finite element equations,” International Journal for Numerical 

Methods in Engineering, Vol. 14, Issue 11, pp. 1613-1626, 1979 
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Here, j represents the BFGS update index, and matrix 
jΓ  and scalar 

jz  can de expressed as follows. 
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    (5.5.15) 

 

Also, the quasi-Newton vectors 
jδ  and 

jγ  are expressed using the increment solution iu , which applies 

the line search factor   from the i th iterative calculation, and the difference between unbalanced forces 

during iterative calculation as follows. 
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   (5.5.16) 

 

The i th incremental solution during iterative calculations is calculated using the j th BFGS updated stiffness 

matrix and unbalanced forces, as shown below: 

 
1 1 1 1 1

1

i i T i T i

j j j j j j jz     

  u K g Γ K Γ g δ δ g   (5.5.17) 

 

The inverse matrix of the stiffness matrix is not actually modified by the BFGS update process; the incremental 

solution is calculated during iterative calculations using a recursive method. In other words, it maintains the 

decomposed form of the initial stiffness matrix with no BFGS updates. The incremental solution can be found 

using simple recursive vector operations. The quasi-Newton vector is saved for these operations. The saved 

vector is erased when incremental analysis converges and the stiffness matrix is recomposed. 

 

Arc-length method 

Figure 5.5.3 displays the various displacement load paths, including the unstable equilibrium path. When 

performing static nonlinear analysis for these phenomena, analysis of the unstable static equilibrium state after 

the limit point cannot be performed when the general load controlled nonlinear solution is used. In other words, 

general nonlinear solutions cannot find the converging solution after the limit point. When using the 

displacement controlled method, the analyzable region increases locally, but this is not a general solution and 

tracing is impossible for the snap-back phenomenon. In this case, the arc-length method can be used. The arc-

length method can successfully trace the equilibrium path even when the static equilibrium state includes an 

unstable region.  
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The external forces in the arc-length method are assumed to be proportional to the load parameter  , which is 

an independent scalar variable. Hence, the arc-length method can be seen to increase the DOF of the 

fundamental finite element problem by '1'. However, because the algorithm is composed such that the 

parameter   and accumulated incremental solution satisfy the arc-length constraint, the final number of DOF 

is maintained. The unbalanced forces including the load parameter can be expressed as follows: 

 

,( , )i i i i ext int i  g u f f    (5.5.18) 

 

Here, linearizing the condition that the unbalanced forces that occur at the 1i  th iterative calculations due to 

the incremental solution 1i u  and incremental load parameter 1i   is 0. The relationship between the 

incremental solution and incremental load parameter can be obtained as follows:  

 
1

1 1 1( )i i i i ext 

   u K g f     (5.5.19) 

 

Using this, the accumulated incremental solution at the 1i  th iterative calculation is as follows: 

 

1 1i i i T      u u u u     (5.5.20) 

1

1i i 

u K g  : Incremental solution for unbalanced force 

1

1T i ext



u K f  : Displacement generated for total external force 
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Figure 5.5.3 Various unstable 
equilibrium paths 
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FEA NX uses the Crisfield, Riks, or Modified Riks method arc-length constraints. The Crisfield method7 is used 

as the default arc-length constraint:  

 
2

1 1

T

i i l    u u     (5.5.21) 

l  : Arc-length 

 

The incremental load parameter 
1i 

can be calculated from the equation above, and substituting this can 

calculate the 1i  th iterative calculation solution. Like the general nonlinear solution, this process is repeated 

until the user specified convergence criteria is satisfied and the convergence criteria are the same as that of the 

general nonlinear solution. In other words, convergence is judged using the change in member force, 

displacement, or energy.  

 

When using the arc-length method, accurate load state calculation can be difficult because the load increment 

is determined by the arc-length constraint condition and cannot be controlled by the user. Hence, the applicable 

range of the arc-length method is limited to problems that need tracing of the unstable equilibrium state. No 

additional advantages exist for general nonlinear problems. 

 

Over-relaxation method 

 

The over-relaxation method is one of the methods to improve the convergence rate by multiplying the 

estimated unbalance force by the coefficient at the iterative calculation. 

 

Although it is a basic approach rather than a line search method, it is a method that is very similar to the initial 

stiffness method because the formula is very simple and unlike the line search method, the additional analysis 

time is required in the iterative calculation. 

 

 1 1e i e i i     K u K u r u                                      (5.5.22) 

 

Where ω is the excess relaxation coefficient. 

                                                                 
7 Crisfield, M.A., “An arc-length method including line searches and accelerations,” International Journal for Numerical 

Methods in Engineering, Vol. 19, Issue 9, pp 1269-1289, 1983 

Figure 5.5.4 Over-relaxation 
method 
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The initial relaxation coefficient is directly input by the user, 1.2 is defined as the default value, and should not 

exceed 2.0 at maximum. 

 

Enhanced predictor 

 

The initial displacement estimation method is a method of predicting the initial displacement at the present 

stage using the load factor ratio taken from the present stage divided by previous stage and multiplied by the 

displacement result of the previous stage as shown in the following equation. 

 

1

1

predictor n
n n

n









  


u u

                                                (5.5.23) 

 

The estimated displacements do not exactly coincide with those of the current step, but they are useful for 

iterative calculations because they predict closer results than the displacements estimated by elastic stiffness. 

 

Particularly, it is more effective when the material model has a large plasticity. However, because it is less 

accurate than the estimated tangent stiffness by Newton-Raphson, it is recommended to use it with the initial 

stiffness method. 

 

In general, the initial stiffness method is a stable method for solving the problem.   

 

Figure 5.5.5 Estimation of Initial 
Deformation (enhanced 
predictor) 
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Strain/Stress Measurement 
Considering Large Deformation 

For geometric linear analysis, the strain and stress are defined without considering the shape difference before 

and after deformation. The strain in geometric linear analysis is generally defined as follows: 

 

1
[ ( ) ]

2

T 
 

 

u u
ε

X X
    (5.6.1) 

u  : Displacement 

X  : Coordinates before or after deformation 

 

For geometric nonlinear analysis that considers large deformation, the strain can be defined using various 

methods and a corresponding stress exists for each strain to define virtual work.  

 

Definition of strain 

Strains that consider large deformations include Green strain, Green-Lagrange strain and rate of deformation 

or strain rate. The Green strain tensor E  is defined as follows: 

 
2 2 2ds dS d d   X E X    (5.6.2) 

X  : Coordinates of a particular position on the structure before deformation  

 

The Green strain can be seen as the difference between the squared value of the differential length before 

deformation dS  and after deformation ds . The Green strain tensor can be defined using the deformation 

gradient as follows: 

 

1
( )

2

T  E F F I     (5.6.3) 

 

If only rigid motion occurs, Green strain does not occur and it is appropriate as a measurement of deformation. 

 

The rate of deformation D is defined by the velocity gradient as follows: 
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Section 6 
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v  : Velocity vector 

X  : Coordinates of a particular position on the structure before deformation 

 

In other words, it corresponds to the symmetric part of the velocity gradient tensor. The rate of deformation 

can be seen as a value for the squared differential length. 

 
2

2
ds

d d
t


  


x D x     (5.6.5) 

 

The rate of deformation also does not occur when only rigid motion exists, and it has the following relationship 

with the Green strain: 

 

1T   D F E F     (5.6.6) 

 

Because the rate of deformation is a rate of change with time, it is generally time integrated and used as a strain. 

If analysis that considers geometric nonlinearity of a material is performed in FEA NX the strain is computed by 

time integrating the rate of deformation. FEA NX uses the rate of deformation or strain rate. 

 

Definition of stress 

When geometric deformation is large, the stress can also be defined using various methods. FEA NX uses the 

Cauchy stress. 

 

Because Cauchy stress is a value that satisfies the equilibrium equation of the current shape, it is also known as 

true stress σ  and is defined as follows: 

 

d d d     n σ f t     (5.6.7) 

 

The Cauchy stress of the shape before deformation can be converted to the 2nd PK stress (Piola-Kirchhoff: S ) 

as follows: 

 
1 TJ    S F σ F     (5.6.8) 
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The physical meaning of 2nd PK stress is not clear, but it is useful in describing the equation of motion when 

coupled with the Green strain and so it is often used to define the behavior or materials with an energy potential 

such as rubber. FEA NX uses the following stress and strain integration method for all materials: 

 

Stress rate and strain rate integration  

Elasto-plastic materials, viscoelastic materials etc. do not have energy potential, but use a constitutive 

relationship consisting of the strain rate and objective stress rate. The Jaumann stress rate used is defined as 

follows: 

 
J T    σ σ w σ σ w    (5.6.9) 

 

Strain rate and objective stress rate have the following relationship from the constitutive equation of the 

material: 

 

:J σ C D     (5.6.10) 

 

Reflecting the central difference and considering the structural rotation in equation (5.6.10), the equation that 

calculates the stress at step 1n using the stress and strain increments calculated at step n : 

 

1 :T

n n      σ R σ R C ε    (5.6.11) 
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The rotation amount increment R  is calculated as follows 8  to satisfy the incrementally objective stress 

condition. 

 

11 1
( ) ( )

2 2

     R I W I W     (5.6.12) 

 

Particularly, the strain increment and incremental spin calculation is performed on the 1 / 2n   shape.  

 

1/2 1/2 1/2 1/2

1 1
( [ ] ), ( [ ] )

2 2

T T

n n n n   

   
     

   

u u u u
ε w

x x x x
  (5.6.13) 

 

The strain rate integral is also calculated using equation (5.6.11) and uses the structural rotation amount 

increment R . 

 

  

                                                                 
8 Hughes, T.J.R. and Winget, J., “Finite rotation effects in numerical integration of rate constitutive equations arising in 

large deformation analysis,” International Journal for Numerical Methods in Engineering, Vol. 15, 1980 
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Nonlinear Dynamic Response  

FEA NX supports nonlinear time history analysis that includes geometric, material nonlinearity and it is based 

on implicit time integration. 

 

The dynamic equilibrium equation in nonlinear time history analysis uses the HHT   method as implicit time 

integration, just like for linear time history analysis, and uses the following modified equilibrium equation. 

 

 1 1 int, 1 , 1 int, ,(1 )n n n ext n n n ext n

H H
t

    
             

Mv Cv f f Cv f f 0   (5.7.1) 

 

In nonlinear time history analysis, the effects of the mass matrix rotation due to geometric nonlinearity are 

considered. The rotational inertia part of the mass matrix is modified for each iterative calculation, according to 

the finite rotation of the nodes, and the inertial force generated from the rate of change of the mass matrix is 

considered in analysis. 

 

Nonlinear time history analysis calculates the convergence solution for each time step using the nonlinear finite 

element solution in section 5.5. The unbalanced forces are expressed from equation (5.7.1) as follows: 

 

 1 1 1 1 int, 1 , 1 1 int, ,

1 (1 )n n n n n ext n n n n ext n

n H H
t

       




             

g M v C v f f C v f f  (5.7.2) 

 

The tangential stiffness matrix can be found by applying the time step equation (5.4.3), from the Newmark 

method for velocity and acceleration, onto the unbalanced force and differentiating for the displacement DOF, 

as follows: 

 
int, 1 , 1

1 1 1

2

(1 )1
(1 ) (1 )

n ext n
n n nH

H H
t t t

 
 

  

 
    

      
    

f f
A M M C

u u
 (5.7.3) 

 

Here, 0.05H   is used as the default value, just like linear time history analysis. Also, to secure 

unconditional stability, the following values are used : (1 2 ) / 2H   , 2(1 ) / 4H    

 

Angular velocity and angular acceleration  

When considering geometric nonlinearity in nonlinear time history analysis, the angular velocity and angular 

acceleration need to be updated by reflecting the effects of body axis system rotation. Defining the body axis 

Section 7 

7.1 
Implicit Time 

Integration  
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system where finite rotation occurs as , the Newmark time step equation in the coordinate system of the body 

axis system is as follows: 

 
1 1 (1 )n n n nt          ω ω α α    (5.7.4) 

ω , α  : Angular velocity and angular acceleration about the body axis system   

 

Using the base vector perpendicular to the body axis system e , the equation above can be expressed for the 

GCS. 

 

 1 1 1 (1 )n n n n n nt t           ω α e e ω α   (5.7.5) 

 

The product of the perpendicular base vectors in equation (5.7.5) is the same as the incremental rotation matrix 

found below: 

 

ˆexp( )  C     (5.7.6) 

̂  : Skew symmetric matrix for the rotation amount increment 

 

The rotation amount increment can be expressed by the Newmark method using the incremental rotation 

matrix, as shown below. 

 

2 1 2 1

2

n n nt t t    
        

  
θ α C ω α  (5.7.7) 

 

Rearranging equation (5.7.7) for angular velocity and angular acceleration respectively and substituting into 

equation (5.7.5) gives the following updating equations for both angular velocity and angular acceleration. 
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  (5.7.8) 
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Damping effect 

Mass proportional damping and stiffness proportional damping are also considered in nonlinear time history 

analysis, just like linear time history analysis. In this case, the damping matrix is composed similarly to equation 

(5.4.5). The mass matrix, which is used to calculate the damping matrix in nonlinear time history analysis, 

considers the rotational effects due to finite rotations and the stiffness matrix only uses the stiffness matrix due 

to material nonlinearity. 

 

,

e e e e

j j j mat j   C M K B    (5.7.9) 

matK  : Stiffness matrix due to material nonlinearity 
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Contact Condition  

Contact analysis fundamentally assumes that two objects in a space can be in contact, but cannot penetrate 

each other (non-penetration condition), and is nonlinear in behavior or in condition from a physical point of view. 

The type of contacts are general contact (considers the impact and impact friction between two objects in 

analysis) and rough contact (does not consider sliding) shown in figure 5.8.1, and welded contact (two objects 

are welded from the start of analysis) shown in figure 5.8.2. Here, the welded contact is assigned depending on 

the position of two objects at the start of analysis and can be seen as linear. 

 

 
 

 
  

Rough contact
General contact

Welded contact

Section 8 

Figure 5.8.1 Concept of general 
contact and rough contact 

Figure 5.8.2 Concept of welded 
contact  
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Relationship between contact condition and analysis type  

The contact condition can be used for initially adjacent bodies in structural analysis, consolidation analysis and 

seepage analysis.  

 

The contact can be classified with the node-to-surface contact, or surface-to-surface contact. Node-to-surface 

contact takes less time, but the solution accuracy is relatively low because the nodes of the main object tend to 

penetrate through the sub object. On the other hand, surface-to-surface contact takes longer but the non-

penetrating conditions are satisfied relatively accurately, allowing the accurate simulation of the structural 

behavior. FEA NX supports the surface-to-surface contact. 

 

The general contact can be used in nonlinear structural analysis (static, dynamic) and consolidation analysis. The 

general contact corresponds to the nonlinear condition, and its behavior is different according to the geometric 

nonlinearity consideration in terms of analysis techniques. In case of considering geometric nonlinearity, the 

possibility of contact is considered for all master segments under the assumption of large displacement. On the 

other hand, only the contact closed to within initial user-defined distance between master segment and slave 

node is considered. 

 

Contact plane search 

Contact search uses the slave node/master segment algorithm. This algorithm determines contact by the 

adjacency between the slave node and master segment, or how much the slave node penetrates the master 

segment. Generally, the order of the slave node defined object and master segment defined object does not 

matter. But from a numerical point of view, the master segment needs to be defined on the object with a 

relatively larger stiffness, or relatively element-sparse object, to obtain more accurate analysis results.  

 

To determine the actual contact of the slave node and master segment, the global search process is conducted. 

Global search is the process that determines the preliminary slave nodes where objects or segments can collide 

in space. Contact search is performed locally for the slave node and master segment sets determined by global 

search. 

 

To determine whether nodes and planes are actually in contact, the slave nodes need to be projected 

orthogonally on the master segment as shown in figure 5.8.3. Defining vector r  from the origin to the projected 

point (A), and vector sx  from the origin to the slave node gives the following equation:  
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    (5.8.1) 
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Here,  ,c c  is the position of contact point (A) on the master segment, expressed in the natural coordinate 

system. The  ,c c   that satisfies the equation above can be calculated numerically using the Newton-

Raphson method. The coordinate increment  ,c c    for applying the Newton-Raphson method is as follows: 

 

  ,c c s

 
 

 

 

    
       
      
         

       

r r

r r
r x

r r
  (5.8.2) 

 

Using the initial condition as    , 0,0c c   , the equation above converges easily when the position of contact 

point (A) or slave node (B) is not far from the master segment. If the next slave node is checked and determined 

to have penetrated the contact plane, the force (contact force) proportional to the penetration depth is added 

to the slave node and contact plane. 

 

 
 

Calculation of contact force 

The displacement relationship between the slave node and master segment, which are determined to be in 

contact, is confined using the penalty method. In FEA NX, the gap and contact force is defined using the 

following equations (5.8.3), (5.8.4): 

 

 B A A

Ng   x x n      (5.8.3) 

0C

N N Nf k g if g       (5.8.4) 

nk  : Penalty coefficient 

,A B
x x  : Position vectors of point (A) on master segment and slave node (B) 

A

B

An




Figure 5.8.3 Normal relationship 
between slave node and master 
segment 
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A
n  : Normal vector of point (A) on master segment 

 

The penalty coefficient 
Nk  has the effect of applying an elastic stiffness between the master segment and 

slave node, and the non-penetrated condition is satisfied approximately depending on the size. For the welded 

condition or the sliding contact condition, the contact force is assigned even when 
Ng  is positive and the 

initially adjacent segment and slave nodes are not separated and its effects reflected. FEA NX automatically 

calculates the penalty coefficient using the following equation (5.8.5): 

 

plane/shell elements :

solid elements :

s i
i si

s i
i si

f M
k A

h

f K
k A

h





   (5.8.5) 

sf  : Proportionality coefficient 

iK  : Bulk modulus 

iM  : Coefficient of expansion 

iA  : Area 

iV  : Volume 

h  : Length of master segment 
1 21 1

solid : plane/shell :
n n

mi
mi

i imi

V
A

n A n
   

 

The proportionality coefficient 
sf  above is determined differently depending on the analysis type or contact 

condition type, and the user can modify it to effectively satisfy the non-penetrated condition or welded 

condition. For the welded condition, a resistant force against sliding in the lateral direction of the contact plane 

is assigned and its size is as follows: 

 

 

 

B A A

x

T
B A A

y

   
  

   

u u t
g

u u t
    (5.8.6) 

T

T Tkf g      (5.8.7) 

Tk  : Penalty coefficient 

,A A

x yt t  : Lateral vector of point (A) on master segment  

 

For the welded condition, the penalty coefficient Tk  uses the same value as Nk . 
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As equation (5.8.4.) and (5.8.7), the contact force of linear elasticity or resistance force for sliding is not suitable 

for the general contact used in nonlinear analysis. In order to obtain the convergence, much oscillation can be 

occurred because the stiffness of general contact rapidly changes from 0 to 
Nk  according to the sign of gap. 

To compensate for this, FEA NX uses the modified contact force as follows: 

 

 (5.8.8) 

 

 
 

There exists more complex nonlinearity in the resistance force against horizontal sliding because this force 

occurs only if the vertical force is applied. As a result, the equation (5.8.7) is modified and applied as follows: 

 

2

C
T T

T

N

k f

k d
f g     (5.8.9) 

 

In the above equation, the discontinuity of force which may occur at the moment of contact suddenly 

disappeared can be minimized by proportion to the vertical contact force and horizontal force. In case of general 

contact, the friction can be considered additionally. 

 

0T Cf f  f    (5.8.10) 
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Figure 5.8.4 Relation between gap 
and modified contact force 
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  : Friction coefficient 

 

The behavior which satisfied with the above equation becomes elastic movement, and if it does not satisfy the 

above equation due to the large horizontal movement, sliding occurs. When you compare (5.8.9) and (5.8.10), 

the horizontal relative displacement within certain distance 2d  shows elastic movement, and the more 

relative displacement can be seen that the slip is assumed. As the general contact considering friction creates 

an asymmetric stiffness matrix, numerical calculated efficiency is significantly inhibited. Also, the large friction 

coefficient (over 0.3~0.4) or horizontal elastic modulus Tk  can be the factors causing convergence problem. 
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Slope Stability Solution 

Slope stability for an embankment or excavation is one of the most frequently dealt problems in geotechnical 

engineering. The slope always has a self-weight potential energy due to gravity and if external forces such as 

pore pressure, applied load, earthquake, wave force etc. act on the slope, its stability is greatly affected. Here, 

slope failure can occur when the active force of the slope is greater than the resistant force of the soil. Slope 

stability analysis evaluates the stability against failure using the relationship between the active force and 

resistant force of the slope. 

 

The widely used limit equilibrium method can only evaluate the stability for the basic given conditions. However, 

the actual collapse of the ground generates a large local deformation and fails at the limit. Hence, establishing 

an analysis method that can trace the deformed shape continuously from the initial deformation to collapse is 

important for stability analysis of the ground. Recently, active research is ongoing to apply finite element 

method as a method of evaluating stability such as slope failure, using the strengths of finite elements such as 

the ease in checking the deformed shape, even at various load and boundary conditions.  

 

Potential energy (W)

(Self Weight)

Potential energy (W)

(Self Weight)

STEP #2 : Input the external ForceSTEP #1 : Stable Ground Status

pore water pressure, applied 

Load, earthquake load, wave load

STEP #3 : Shear Stress within Slope

W

T

STEP #4 : Compute Factor of Safety

Factor of Safety =
Driving Force

 Resisting force

 
 

  

Section 9 

Figure 5.9.1 Slope failure process 
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The following slope stability analysis methods have been suggested. 

 

► Mass procedure and slice method according to the limit equilibrium theory 

► Limit theory according to the rigid-plastic theory 

► Finite element method according to the elasto-plastic theory 

 

In FEA NX, the usable slope stability analysis methods that use the finite element method are the strength 

reduction method and the stress analysis method based on the limit equilibrium theory. 

 

Slope stability analysis using the finite element method are detailed approximate solutions that satisfy all the 

equilibrium force conditions, compatibility conditions, constitutive equations and boundary conditions of each 

point on the slope. This numerical analysis method can simulate nearly actual failure shapes, reflect the field 

conditions better and can analyze the minimum safety factor and failure behavior of the slope in detail. 

Particularly, the failure process is automatically simulated without any assumptions made to the failure plane 

of the slope.9 

 

The strength reduction method (a slope stability analysis method based on the finite element method) gradually 

decreases the shear strength and performs analysis until the point where the calculation does not converge. This 

point is considered to be the failure point of the slope, and the maximum strength reduction ratio at this point 

is thought of as the minimum safety factor of the slope. This method is costly because it requires multiple 

nonlinear analyses, but it can provide more accurate results in a reasonable time for improved data processing 

speeds. Also, the strength reduction method can verify the deformation process from the initial slope to failure 

without any required assumptions for the failure plane. 

 

Strength reduction theory 

To simulate slope failure using the strength reduction method, the safety factor is computed at an arbitrary 

point where the Mohr circle is in contact with the failure envelope, as shown in the figure below. The stress state 

at this point can be determined as the failure state and when this failure point increases, overall slope collapse 

occurs. The finite element analysis at this limit state diverges, and the safety factor at this point is defined as the 

minimum safety factor. 

 

  

                                                                 
9 Griffiths, D.V. and Lane, P.A. (1999). Slope Stability Analysis by Finite Elements, Geotechnique, 49(3), 387-403 

9.1 
Strength Reduction 

Method 
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W A





Critical Status Line

Mohr’s Circle for A point

Critical Status Line / 
Factor of Safety

 
 

Calculation of minimum safety factor 

The material models used in the strength reduction method are Mohr Coulomb, Drucker Prager and Modified 

Mohr Coulomb. For the input variables used here, all variables are assumed to have a constant value except 

cohesion, friction angle and dilatency angle, which determine shear failure. The cohesion, friction angle and 

dilatency angle corresponding to ground elements (plane strain, axisymetric, solid) are gradually decreased and 

the safety factor sF at slope failure is computed. 

 

s

f

F



      (5.9.1) 

 

Here,   is the shear strength of the slope material, and can be expressed using the Mohr-Coulomb criteria as 

follows: 

 

tannc        (5.9.2) 

 

Also, 
f  is the shear stress of the active plane and can be calculated as follows: 

 

tanf f n fc        (5.9.3) 

SRF
f

c
c   : Shear strength factor (Cohesion) 

1 tan
tan

SRF
f


   

  
 

 : Shear strength factor (Friction angle) 

SRF : Strength reduction factor 

 

Figure 5.9.2 Strength reduction 
method 
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For the strength reduction method, the SRF value just before the non-convergence is evaluated as the safety 

factor. Hence, the safety factor can be slightly different depending on the user input number of convergence 

and convergence criteria.  

Other material models can be included for slope safety analysis, but the strength reduction is not applied to 

these models. 

 

Strength reduction using the arc-length method 

The main difference between the existing strength reduction method and the method using the arc-length 

method is the method of increasing/decreasing the safety factor, which is the standard for strength reduction. 

The existing method computes the safety factor of the next step by controlling the safety factor of the current 

step by the user defined increment. Hence, ineffective calculation is performed for very stable models or 

unstable models without the engineer's judgment because the uniform safety factor is incremented. However, 

using the arc-length method, the arc length is computed by the convergence speed of the previous step and 

thus a more appropriate safety factor increment can be obtained. 

Defining the projected stress on the new failure plane caused by the strength decrease of the in-situ stress state 

0σ  as
1σ , and introducing an additional arc-length parameter  to apply the arc-length method, the stress 

within the element can be assumed as follows:  

 

0 1(1 )    σ σ σ σ    (5.9.4) 

 

Here, σ is the stress component corresponding to  that is needed to maintain the equilibrium with the external 

forces on the failure plane.  

 





0σ
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 0fos  
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Using equation (5.9.4), the unbalanced forces of the i th iterative calculation for nonlinear analysis can be 

expressed as a function of the DOF vector and arc-length parameter: 

 

 0 1( , ) (1 )
e

T

i i i ext

e

d  


     g u f B σ σ σ    (5.9.5) 

 

Figure 5.9.3 Arc-length load 
vector and stress flow diagram 
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The external force including self weight (
extf ) does not change with  . This method is different from the 

general arc-length method for unstable equilibrium state analysis in that the internal forces change with the 

stress assumption in equation (5.9.4). To apply the Newton-Raphson based nonlinear finite element analysis, 

equation (5.9.4) can be expanded for the incremental solution and increment parameters as shown below: 

 

1 1 1 1i i i i i AL       g g K u f 0    (5.9.6) 

1i


 



g
K

u
 : Tangential stiffness matrix 

0 1
e e
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g

f B σ B σ  : Arc-length force vector 

 

Using this, the accumulated incremental solution that occurs at the 1i  th iterative calculation is as follows: 

 

1 1i i i T      u u u u     (5.9.7) 

1

1i i 

u K g  : Incremental solution for unbalanced force 

1

1T i AL



u K f  : Displacement generated for arc-length load vector 

 

Here, 1i  is calculated using the arc-length constraint condition. The related information is already explained 

in the nonlinear solution section and is hence omitted. This process is repeated until the user defined 

convergence criteria is satisfied. The safety factor of each step can be calculated through this process. This 

subsequent process is also repeated until the rate of change for the safety factor is within a certain condition. 

 

force
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extf
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1nfos 
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Figure 5.9.4 Safety factor 
increment for arc-length 



 

 

318 | Chapter 1. 개요 

 

318 | Section 9. Slope Stability Solution 

Chapter 5. Algorithm 

 
ANALYSIS REFERENCE 

The limit equilibrium method is one of the most often used slope stability methods for actual design. However, 

this method cannot find the stress history of the actual slope or the change in ground behavior. On the other 

hand, slope stability analysis using the finite element method can consider the slope formation process and 

other ground characteristics, but it requires a longer analysis time because it performs multiple nonlinear 

analyses.  

Recently, much research has been done in this area as to the strengths of the using limit equilibrium method 

and finite element based slope stability analysis simultaneously. FEA NX provides the slope stability analysis 

method that uses the finite element stress analysis results. This method is based on the virtual sliding surface of 

the limit equilibrium method and the stress results of stress analysis.  

This method computes the safety factor for multiple assumed virtual sliding surfaces using the stress results of 

finite element analysis, and the minimum safety factor and corresponding critical section is computed. The 

provided ground material models are Mohr Coulomb, Drucker Prager and Modified Mohr Coulomb, just like the 

strength reduction method. 

 

Calculation of minimum safety factor 

The safety factor used in the finite element method is defined as follows: 

 

f
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m
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d
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    (5.9.8) 

 

Here, m  is the generated shear stress, 
f  the shear strength, and for Mohr Coulomb materials, it can be 

expressed as follows: 

 

 

tan
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sin 2 cos 2

2

f n

m y x xy

c  

     

 

  
   (5.9.9) 

 

Here, the directional stress normal to the sliding surface n is as follows: 

 
2 2sin cos sin2n x y xy            (5.9.10) 

c  : Cohesion 

  : Internal friction angle of the material 

  : Angle between horizontal plane and sliding surface 

x , 
y  : Normal stress in the x direction and y direction respectively 

xy  : Shear stress 

 

9.2 
Stress Analysis 

Method 
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Stress integration along virtual sliding plane 

To calculate the safety factor, the line integral of stresses along the virtual sliding plane need to be performed. 

For this, the stress value at an arbitrary position is required. The stress is calculated using the inner product of 

the nodal stress and the shape function at that position. 

 
node

node

1

i i

i

σ N σ     (5.9.11) 

iN  : Shape function at node i  

node

i  : Nodal stress at node i  

  : Stress at arbitrary point within the element 

 

Here, the nodal stress is calculated through the stress recovery technique, which uses the nodal average method. 

In other words, FEA NX calculates the nodal stress through extrapolation of the integral stresses of each node 

sharing element, and the final nodal stress for shared nodes is applied as the average value of the calculated 

nodal stresses. 

 

The stress integral along the virtual sliding plane in the 2D GCS is transformed into an integral form in 1D local 

coordinate system and calculated using the following equation: 
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    T T   (5.9.12) 

  : Coordinate variable in local coordinate system 

iW  : Constant of integration at integral point i  

T  : Transformation matrix that transforms stress in the element coordinate system to GCS 

Figure 5.9.5 Stress components of 
the slope 
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L  : Element length 

  : Shear stress 
m  or shear strength 

f  on virtual sliding plane  

 

The finalized total safety factor for the given virtual sliding plane is as follows: 

 

2

1

2

1

nel n

n
1

nel n

n
1

f

i
s

m

i

d

F

d



















    (5.9.13) 

nel  : Number of elements passing the virtual sliding plane 

1n  : Start point of the virtual sliding plane within the element 

2n  : End point of the virtual sliding plane within the element 

 

The stress analysis method based on the limit equilibrium method uses the stress field computed from the finite 

element method and the virtual sliding surface of the limit equilibrium method. Hence, it has a stress distribution 

and deformed shape from finite element analysis, and is optimized for obtaining the critical section from the 

limit equilibrium method. Compared to the strength reduction method, it requires a much shorter analysis time 

and can accurately compute various ground or reinforcement members without any particular assumptions. 
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Equivalent Linear Solution  

Equivalent linear analysis simulates nonlinearly behaving ground according to strain using linear analysis. This 

method simplifies the complex nonlinear ground properties into linear equivalent properties for linear analysis. 

FEA NX supports free field analysis for analyzing the in-situ ground behavior before construction. FEA NX also 

supports 2D equivalent linear analysis for ground-structure coupled analysis. 

 

Free field analysis finds the ground response for an input load on the in-situ ground state before any construction 

of structures. Free field analysis is used for ground surface vibration prediction to determine the design response 

spectrum, computation of dynamic stress and strain to evaluate liquefaction, and determination of earthquake 

load that causes ground or structural instability. 

 

Free field analysis finds the ground response due to the vertically transmitted shear waves that pass the linear 

viscoelastic region. The analysis ground consists of multiple strata that are infinite in the horizontal direction 

and a semi-infinite bottom layer as shown in figure 5.10.1. Each stratum is homogeneous and assumed to have 

isotropic material properties. The vibrations in the analysis model are caused by shear waves, which penetrate 

and reflect the model ground vertically, and displacement only occurs in the horizontal direction. Hence, the 

wave equation (5.10.1) needs to be satisfied for all strata. 

 
2 2 3

2 2 2
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u u u
G G

t x x t
 
  

 
   

             (5.10.1) 

u  : Horizontal displacement 

  : Mass density 

G  : Shear modulus 

  : Hysteretic damping ratio 
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Representing the displacement function as a harmonic function like equation (5.10.2) and transforming 

equation (5.10.1) into the frequency domain gives the governing equation (5.10.3), and the stress-displacement 

relationship is equation (5.10.4). 

 

( , ) ( , ) i tu x t u x e      (5.10.2) 
2

* 2

2
( , ) ( , ) 0G u x u x

x
  


 


    (5.10.3) 

*( , ) ( , )x G u x
x

  





    (5.10.4) 

( , )x   : Shear stress in frequency domain 

*G  : Complex shear modulus 

 

The complex shear modulus above10 uses the following equation suggested by Udaka. 

 
* 2 2(1 2 2 1 )G G i          (5.10.5) 

                                                                 
10 Udaka, Takekazu. (1975). Analysis of Response of Large Embankments to Traveling Base Motions, Department of Civil 

and Environmental Engineering. Berkeley: University of California, p346. 

Figure 5.10.1 Free field analysis 
model 
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The free field ground model is generally expressed as figure 5.10.1 to find the solution of the 1D wave 

transmission equation. The layer boundary number is assigned from the ground surface and expressing the 

response of the m th layer as 
mu , the response can be represented using the following function of the depth 

mx  from the top part of the m th layer: 

 
* *

( , ) ( ) ( )m m m mik x ik x

m m m mu x A e B e   
     (5.10.6) 

* *
* *( , ) ( ( ) ( ) )m m m mik x ik x

m m m m m mx ik G A e B e    
    (5.10.7) 

*

mk  : Wave number of the m th layer 

mA  : Layer response coefficient of elastic waves transferred upwards in the m th layer 

mB  : Layer response coefficient of elastic waves transferred downwards in the m th layer 

 

The following compatibility condition and force equilibrium condition need to be satisfied at the adjacent layer 

boundaries: 

 

1 1

1 1

( ) ( 0)
 1,2,..., ( 1)

( ) ( 0)

m m m m m

m m m m m

u x h u x
m N

x h x 

 

 

   
  

   
  (5.10.8) 

 

Substituting equations (5.10.6) and (5.10.7) into equation (5.10.8) can derive the relationship between the 

coefficients as follows: 

 
* *

* *

1 1

* *

1 1 * *

1 1

, 1, 2,..., ( 1)
( )

m m m m

m m m m

ik h ik h

m m m m

ik h ik hm m
m m m m

m m

A B A e B e

m Nk G
A B A e B e

k G



 



 

 

   
 

  
   

 

  (5.10.9) 

 

Rearranging this to derive the relationship between the response coefficients of adjacent ground layers gives 

the following recurrence relationship shown in equation (5.10.10): 

 

* *

* *

* *

1

* *

1

1 1
(1 ) (1 )

2 2

1 1
(1 ) (1 )

2 2

m m m m

m m m m

ik h ik h

m m m m m

ik h ik h

m m m m m

A A e B e

B A e B e

 

 









   

   

 (5.10.10) 

mh  : Thickness of m th layer 

*

m  : Dynamic stiffness ratio between adjacent layers 

 

Here, the dynamic stiffness ratio between adjacent layers can be expressed as follows: 
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* *

*

* *

1 1

m m
m

m m

k G

k G


 

     (5.10.11) 

 

Because shear stress is always '0' at the ground surface, 
1 1A B  can be known from equation (5.10.7). Hence, 

the response coefficient of the m th layer can be found by applying equation (5.10.10) in order from the first layer.  

 

1

1

( ) ( ) ( )

( ) ( ) ( )

m m

m m

A a A

B b B

  

  




    (5.10.12) 

 

Here, 
1 1 1a b   can be known. The transfer function ( )ij H  between layer boundary i  and layer boundary j  

is as follows: 

 

( ) ( ) ( )
( )

( ) ( ) ( )

i i i
ij

j j j

u a b
H

u a b

  


  


 


    (5.10.13) 

 

If the transfer function ( )ijH   is determined and the response ( )ju   at layer boundary j  is given, the 

response ( )iu   at layer boundary i can be found using the following equation: 

 

( ) ( ) ( )i ij ju H u       (5.10.14) 

 

Also, frequency domain response can be inverted to the time domain using the FFT (fast Fourier transform) 

method. 

 

The main difference between ground-structure interaction problems and general structural dynamics problems 

is the radiation damping phenomena due to the infinite ground domain. Whilst general damping properties 

damp the structural motion through material friction, radiation damping releases wave energy into the infinite 

domain of the ground, which contributes to the damping phenomena of structural kinetic energy. 

 

Radiation damping is included in the damping term of the equation of motion, and its size is determined by the 

wave form of the externally transmitted wave. The wave form can be easily modeled in the frequency domain 

and it is efficient to consider this using frequency domain solvers. General ground materials are fundamentally 

heterogeneous and the nonlinearity of its mechanical behavior is very severe. 

 

To correctly analyze the ground-structure interaction problem, the radiation damping phenomena above and 

important nonlinearity characteristics need to be considered simultaneously. Hence, the frequency domain 

10.2 
2D Equivalent Linear 

Analysis 
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solver is used for easy modeling of radiation damping and the equivalent linear method is used to analyze 

material nonlinearity. 

 

The analysis process uses the frequency domain analysis process that uses FFT (fast Fourier transform) and the 

equation of motion composes a combined ground-structural system that has the free field response as the input 

motion. Hence, the ground response and structural response are obtained together for one computation. 

Interpolation is used to reduce the number of frequencies where the solution to the equation of motion needs 

to be found, and this method uses the interpolation of the transfer function solutions of two continuous 

frequencies. Hence, the setting of basic frequencies is important and a sufficiently high limit frequency needs to 

be defined to secure validity of the ground motion analysis. 

 

As mentioned above, the input motion in the time domain can be converted to the frequency domain using FFT 

to calculate the structural response under a vibration load with a constant frequency. All loads in frequency 

response analysis are defined in the frequency domain and are expressed as functions of the assigned frequency. 

In other words, when the angular excitation frequency is  , the load in frequency response analysis can be 

expressed as the following complex harmonic function:  

 

    i tt e f f     (5.10.15) 

 

The corresponding response can also be expressed in the same form: 

 

    i tt e u u     (5.10.16) 

 

Using this, the equation of motion can be expressed in the following form: 

 

   2 i        M C K u f    (5.10.17) 

 

 Using equation (5.10.5) suggested by Udaka, the equation above can be modified and rearranges into the 

following equation: 

 

   2 *      M K u f    (5.10.18) 

* 2 2(1 2 2 1 )i     K K  : Complex stiffness coefficient 

 

Energy transmitting boundary 

It is difficult to model the nearly infinite ground accurately using the 2D model used for ground-structure analysis. 

Hence, the model boundary needs to be set at an engineering appropriate position and the set boundaries need 

to be processed to simulate actual site conditions. 
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FEA NX uses the energy transmitting boundary suggested by Lysmerand Wass11 to express the load ( )f  in 

equation (5.10.18) as follows: 

 
*( ) ( ) ( )( ( ) ( ))f f f      f K u R L u u    (5.10.19) 

( )f u  : Free field analysis displacement of the transmit boundary 

*

fK  : Complex stiffness matrix of the transmit boundary 

R  : Stiffness matrix of the right transmit boundary 

L  : Stiffness matrix of the left transmit boundary 

 

Direct frequency response analysis 

When using the direct solver for direct frequency response analysis, solving the simultaneous equation (5.10.18) 

gives the frequency response  u . The solution can be found accurately using the direct method, but 

calculation is very inefficient for large problems or when many frequencies exist because the simultaneous 

equation needs to be recomposed and solved for each frequency. To supplement this, efficient analysis can be 

performed by interpolation using the transfer function. 

 

Enforced motion 

The input motion of equivalent linear analysis is generally earthquake loading. FEA NX performs analysis that 

use enforced motion. First, the equilibrium equation (5.10.17) is separated into DOFs with and without enforced 

motion. 

 

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

             
              

             

M M u C C u K K u f

M M u C C u K K u f
  (5.10.20) 

 

 

 

 

 

 

 

 

 

Separating the unconfined DOF displacement 1u  into the following quasi-static displacement 
1

qs
u  and dynamic 

relative displacement y  is as follows: 

 

                                                                 
11 Lysmer, J. and Wass, G. (1972). Shear waves in plane infinite structures. Proc. ASCE, Vol. 98, EM1, pp. 85-105. 

1u  : Displacement of unconfined DOF 

2u  : Displacement of DOF confined by enforced motion 

1f  : Load acting on unconfined DOF 

2f  : Confining force of DOF confined by enforced motion 
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1 1

1 1

1 1

qs

qs

qs

 

 

 

u u y

u u y

u u y

    (5.10.21) 

 

The quasi-static displacement, velocity, and acceleration can be calculated using the following equations: 

 
1

1 11 12 2

1

1 11 12 2

1

1 11 12 2

qs

qs

qs







 

 

 

u K K u

u K K u

u K K u

       (5.10.22) 

 

Dynamic relative displacement, relative velocity, and relative acceleration are expressed as follows: 

 

1 1

1 1

1 1

qs

qs

qs

 

 

 

y u u

y u u

y u u

    (5.10.23) 

 

Also, frequency domain analysis results can be found by inverting to the time domain using the FFT (fast Fourier 

transform) method. 
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Linear Buckling Analysis 

Linear buckling analysis is used to determine critical load factors of a structure and the corresponding buckling 

mode shapes. For linear buckling analysis, the equilibrium equation for a structure considering its geometric 

stiffness due to stresses is as follows: 

 

G Ku K u p                                                                 (7.11.1) 

 

K  : Elastic stiffness matrix 

GK  : Geometric stiffness matrix due to stresses 

u  : Total displacement of the structure 

p  : Loads acting on the structure 

 

In linear analysis, stresses in a structure are proportional to loads, and the geometric stiffness matrix is 

proportional to the stresses. Therefore, if we assume that the load, p  is proportional to a reference load, p  , 

the geometric stiffness, 
GK  can be expressed as, 

 

G G







K K

p p
                                                     (7.11.2) 

 

p  : Reference load 

GK  : Geometric stiffness matrix corresponding to the reference load 

  : Load factor 

 

Substituting equation (7.11.2) for equation (7.11.1), we obtain,  

 

G  Ku K u p                                                  (7.11.3) 

 

 

Section 11 
 
 
 
 
 



 

 

Section 10. Equivalent Linear Solution  | 329 

ANALYSIS REFERENCE Chapter 5. Algorithm 

The equilibrium state as in equation (7.11.3) can be either stable or unstable depending on the magnitude of the 

load factor, . In order to assess its stability, the perturbation, u  is added to u  at an equilibrium state. 

 

( ) ( )G      K u u K u u p                                (7.11.4) 

 

The non-perturbation terms in equation (7.11.4) are eliminated using the equilibrium equation (7.11.3), and then 

we obtain an eigenvalue problem as follows: 

 

( )G  K K u 0                          (7.11.5) 

 

At this point, the stability of the equilibrium state can be assessed by the following matrix equation 

 

0G K K  : Stable status 

0G K K  : Unstable status 

 

So the eigenvalue, , which satisfies equation (7.11.5), can be referred to as the critical load factor at which 

instability of the equilibrium begins. And the corresponding eigen mode, 


 (  u ) represents the buckling 

shape of the structure. The critical load causing buckling in the structure can be expressed as 
p

 considering 

the critical load factor and the reference load. Fig. 7.1.1 shows a column subjected to a compression load in its 

equilibrium state and the buckling shape due to the critical load. 
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In linear buckling analysis, the geometric stiffness matrix, needs to be set up and the eigenvalue problem of 

equation (8.6) must be solved. MIDAS calculates the geometric stiffness making use of the linear stresses or 

internal forces in elements and calculates the eigenvalue problem by the Lanczos iteration method. G K 

Expression (7.11.5), which is an eigenvalue problem in linear buckling analysis, can be simply expressed in the 

following form.  

 

( )m G m  K K 0                                                    (7.11.6) 

 

m  : Critical load factor 

m  : Buckling mode shape 

 

FEA NX uses the Lanczos iteration method to solve eigenvalue problems of equation (7.11.6). Equation (7.11.6) 

is similar to the eigenvalue problem, but unlike mass matrix, geometric stiffness matrix GK  is not positive 

definite. Therefore, the linear buckling analysis replaces it with / (1 )m m m    and uses the Lanczos 

iteration method to which Shift-invert technique is applied. Calculated critical load factors are output 

sequentially from low absolute values. 

 

 

In the linear buckling analysis, the critical load factor   has a "+" or "-" symbol depending on the direction of the 

reference load p . When finite element models and loads are complex, the symbols of the critical load factor 

Figure 5.11.1  
Buckling of Column under 
Compression 
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may change with the buckling mode. Thus, FEA NX provides a function to calculate only critical loads with "+" 

symbols if necessary. 

 

Permanent loads, such as self-weight, generally remain constant unlike variable loads, but cause geometric 

stiffness because they produce stresses. FEA NX provides a function that can be used as a variable load or a 

constant load by selecting the type of load. Loads selected for constant loads have a constant value independent 

of the load factor  , resulting in only geometric stiffness. Linear buckling analysis involving constant loads 

becomes a problem of eigenvalues in the same form as equation (7.11.7). 

 
*( )G m G m   K K K 0                                     (7.11.7) 

 
*

GK  : Geometric stiffness for stresses of constant loads 

 

 


