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Elastic Material Properties 

Elastic materials return to their original state after the external load is removed without any permanent 

deformation. FEA NX includes various linear elastic and nonlinear elastic material models. The properties of 

each material model are explained in this chapter. Table 4.1.1 lists the available elastic materials for each 

element. 
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Linear Elastic Isotropic ∨ ∨  ∨ ∨ ∨ ∨ ∨ ∨ 

Linear Elastic 

2D Orthotropic 
   ∨ ∨ ∨    

Linear Elastic 

Transversely Isotropic 
    ∨ ∨ ∨ ∨ ∨ 

Interface Elastic   ∨       

Nonlinear Elastic (1D) ∨         

Jardine       ∨ ∨ ∨ 

D-Min       ∨ ∨ ∨ 

Hyperbolic 

(Duncan-Chang) 
      ∨ ∨ ∨ 

 

Isotropic materials have the same properties in any arbitrary direction. Linear elastic isotropic materials based 

on Hooke's law can be used on all elements, excluding some special elements. Using the modulus of elasticity

E , Poisson's ratio   and coefficient of thermal expansion , the stress-strain relationship for 3D isotropic 

materials can be expressed as follows:  

 

  

Section 1 

Table 4.1.1 Available elastic 
materials for each element type 

1.1 
Isotropic Materials 
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(4.1.1) 

 

For 2D analysis, 0yz zx yz zx       and particularly for plane strain analysis, 0zz  .  
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   (4.1.2) 

 

As  approaches 0.5, the  1 2 2 term approaches‘0 (zero)’, and this can cause numerical errors. Hence, the 

range of Poisson's ratio for isotropic materials is restricted as follows: 

 

1.0 0.5       (4.1.3) 

 

Increase in modulus of elasticity with height 

The change in modulus of elasticity with height can be simulated. If the change is ‘0 (zero)’, a constant modulus 

of elasticity is used, and if it is not ‘0 (zero)’, the modulus of elasticity with reference to a certain height can be 

calculated as follows: 

 

   

 

             

                                    

ref ref inc ref

ref ref

E E y y E y y

E E y y

   

 
  (4.1.4) 

refE
 : Input modulus of elasticity 

incE  : Incremental slope of modulus of elasticity 

refy  : Depth where
refE is measured 
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The y  in equation (4.1.4) represents the position of the integral point where the element calculation occurs 

for the current finite element method. If the integral point y  is positioned higher than 
refy , the modulus of 

elasticity can have a negative(-) value and so, the 
refE  is used as the minimum value for modulus of elasticity 

E . 

 

Orthotropic material is one that has different material properties or strengths in different orthogonal directions. 

The structure is geometrically orthotropic with significant different stiffness in horizontal and vertical direction. 

It is known that the axial stiffness in vertical direction is larger than the effective stiffness in horizontal direction. 

The stress-strain relationship for 3D orthotropic material can be expressed as follows: 
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 (4.1.5) 

 

  

Figure 4.1.1 Conceptual diagram 
for incremental modulus of 
elasticity 

1.2 
Orthotropic Materials 
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The stress-strain relationship for 2D orthotropic material is as follows: 
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  (4.1.6) 

 

The stress-strain relationship for shear in horizontal direction is as follows: 
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In case of orthotropic material, the following properties should be satisfied. 
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12 21 23 32 31 13 21 32 131 2 0                (4.1.9) 

 

Transversely isotropic materials are material models defined by the isotropic cross-section and the axis 

perpendicular to it. The axis perpendicular to the cross-section displays symmetric physical behavior. Hence, 

the physical properties are the same within the cross-section and different in the perpendicular direction. 

Transversely isotropic materials display different physical properties (Modulus of elasticity, Poisson's ratio, 

Shear modulus) in each perpendicular direction. 

 

► out-of-plane cross-sectional properties : 
1E ,  12 13  ,  12 13G G  

► in-plane cross-sectional properties :  2 3E E , 23 , 23G  

 

Here, 
1E  is the modulus of elasticity of the perpendicular axis to the cross-section, and 

12 , 
13  and 

12G , 
13G  

are the Poisson's ratio and shear modulus respectively in the plane created by the perpendicular axis and other 

axes of the cross-section. However, because the physical properties are axisymmetric about the perpendicular 

axis to the cross-section, 
12 13  , 

12 13G G . 
2E and 

3E  
are the modulus of elasticity for each axis of the 

cross-section, 
23 is the Poisson's ratio and 

23G is the shear modulus. Likewise, because the material is isotropic 

in the horizontal direction,
2 3E E . 

1.3 
Transversely Isotropic 

Materials 
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On the other hand, transversely isotropic materials and the out-of-plane Poisson's ratio have the following 

relationship: 
12 1 21 2/ /E E  , 

13 1 31 2/ /E E  . In other words, 
12 and 

21 need to be distinguished when 

defining the transversely isotropic material properties.  

 

MCS / local coordinate system 

FEA NX has a local coordinate system defined by the dip angle within the MCS to simulate the slope of the 

transversely isotropic material model. However, whilst the behavior of transversely isotropic material models is 

defined by the local coordinate system, the constitutive equation is expressed in the MCS. Hence, coordinate 

system conversion is needed for the constitutive equation between the local coordinate system and MCS using 

the dip angle (Detailed information on this is continued in the Constitutive equation and coordinate system 

conversion and Defining interface direction). 

 

Figure 4.1.2 displays the 2D model where the MCS Z axis and the x  axis (tangent direction of the local 

coordinate system) have an angle . 
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Constitutive equation and coordinate system conversion 

The 3D elastic constitutive equation for the local coordinate axis x y z    is equation (4.1.10). 

 

Figure 4.1.2 2D transversely 
isotropic material model 
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 (4.1.5) 

 

Generally, the MCS XYZ and local coordinate system x y z   are not the same. Because equation (4.1.10) is the 

constitutive equation corresponding to the local coordinate system, the stiffness matrix of the local coordinate 

system needs to be converted to the MCS stiffness matrix using the normalized direction vector of the local 

coordinate system in the MCS. The following equations (4.1.11) and (4.1.12) are the coordinate system 

conversion equations for stress and strain respectively: 

 

x y z XYZ   σ R σ     (4.1.11) 

x y z XYZ   ε R ε     (4.1.12) 
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  (4.1.13) 
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  (4.1.14) 

 

 , ,X Y Zn n nn ,  , ,X Y Zs s ss ,  , ,X Y Zt t tt  are the normalized direction vectors of the x , y , z axis 

respectively in the MCS XYZ . For 2D problems, 0Z Z X Yn s t t    , 1Zt   . 
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On the other hand, the following equation is established between the two conversion matrices R
, R

. 

 
T T

   
  R R R R    (4.1.15) 

 

Using this, the stress strain relationship equation in the local coordinate system can be expressed as the MCS 

stress and strain as follows: 
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  (4.1.16) 

 

Rearranging the equation above gives the constitutive equation of the MCS XYZ  , as shown in equation (4.1.17). 
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σ R D R ε    (4.1.17) 

 

Defining interface direction  

The axial direction vectors n , s , t of the local coordinate system x y z   defined in the MCS XYZ  are defined 

by the dip angle
1 and dip direction 

2 . Figure 4.1.3 displays the definition of the two angles. 
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1 is the angle between the MCS Z  axis and the sliding plane corresponding to the y z  plane of the local 

coordinate system with reference to the Y axis, and 
2  is the angle of rotation for the 'y  axis of the sliding 

plane in the Z  axis direction, with reference to the N  axis of the X Y plane. Here, 
1 needs to be in the 

[0 ,180 ]  domain, and 
2 needs to be in the [0 ,360 ] domain. 

Figure 4.1.3 MCS according to dip 
angle and dip direction 
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Generally, reference axes N  and X  of the sliding plane and horizontal plane are not the same. Hence the 

auxiliary angle
3 , which subtracts the declination corresponding to the angle between the reference axes of 

the two planes from
2 , is used when composing the actual transformation matrix. 

 

3 2 declination      (4.1.18) 

 

From the definition above, the vectors n , s , t that form the equations (4.1.13) and (4.1.14) for 3D element 

transformation matrices can be obtained. Here, n  is the normal vector of the inclined plane and s  and t  are 

vectors on the inclined plane that are perpendicular to it. 

 

3D: 
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n s t   (4.1.19) 

 

Meanwhile, because the MCS axes of 2D elements are different from that of 3D elements in FEA NX, the 

definition of the axial direction vector and dip angle of the local coordinate system changes. The dip angle 
1  

is defined as the angle between the MCS Y  axis and x  axis of the local coordinate system. However, because 

the rotation angle of the vertical axis Y  is not considered, the dip direction 
2  and declination is not used. 

The figure below displays the definition of the axis direction vector and dip angle of the 2D local coordinate 

system x y z   . 
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Figure 4.1.4 Definition of dip angle 
and dip direction on 2D MCS 
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From the definition above, the vectors n , s , t that form the equations (4.1.13) and (4.1.14) for 2D element 

transformation matrices can be obtained: 

 

2D: 
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Interface affiliated elements (interface, shell interface, pile elements) are models used to simulate interface 

behavior. The linear stiffness matrix used for these elements are applied such that the elements are separated 

or do not penetrate each other. 

 

The linear stiffness matrix for interface, pile elements are expressed as equation (4.1.21) and the added 

rotational DOF form for shell interface elements is expressed as equation (4.1.22). 
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D     (4.1.22) 

nk  : Normal stiffness 

tk  : Tangential stiffness 

t  : Thickness of shell interface element 

 

Precautions need to be taken on the units for the stiffness above. For example, when the SI system of units is 

used, the units for stiffness are 3/N m , not the units for the modulus of elasticity 2/N m .  

Equation (4.1.23) is recommended for calculating the stiffness, where the modulii of elasticity around the target 

element is divided by the characteristic length. Here, the characteristic length (
chl ) is recommended for the 

thickness of line interface, shell interface, and pile elements. The use of the square root of the element area ( A ) 

is recommended for the plane interface.  

 

n

ch

E
k

l
 , t n

ch

G
k k or

l
      (4.1.23) 

 ,   : Scale factor 

1.4 
Elastic Material of 

Interface Affiliated 

Elements 
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E , G  : Modulus of elasticity, Shear modulus 

 

The scale factor in the equation above needs to be selected empirically depending on the analysis. If the scale 

factor is too large, numerical problems can occur. If it is too small, accurate result values for the relative 

displacement of the interface element cannot be obtained. A value of '0.1 ~ 10' is recommended.  

 

The Coulomb friction model is provided for as the nonlinear material model for interface, shell interface 

elements, and the details are explained in Chapter 2. For pile elements, the multiple curve input or a value to 

simulate perfectly plastic behavior is used as the nonlinear material model. 

FEA NX supports the following nonlinear elastic behavioral models for truss or embedded truss elements: 

 

► Compression only behavior 

► Gap behavior 

► Tension only behavior 

► Hook behavior 

► User defined nonlinear elastic behavior 
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gap strain

 
(a) Compression only behavioral mode   (b) Gap behavioral model 
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(c) Tension only behavioral model   (d) Hook behavioral model 

 

1.5 
Nonlinear Elastic 

Behavior of 

Truss/Embedded Truss 

Elements 

Figure 4.1.5 Various nonlinear 
elastic behavioral models 
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Gaps and hooks have inputs with a length unit. Internally, the gap strain and hook strain are calculated using the 

element length.  

 

FEA NX supports the following nonlinear elastic behavioral models for elastic link elements: 

 

► General behavior 

► Tension only behavior 

► Compression only behavior 

► User defined nonlinear elastic behavior 

 

Tension only, compression only and user defined nonlinear elastic behavior are defined in a similar way as the 

nonlinear elastic behavior of truss and embedded truss in section 1.4. However, whilst the behavior of truss and 

embedded truss elements are represented using the stress strain relationship, elastic link elements do not have 

sectional properties and hence, their behavior is defined using the force displacement relationship shown in 

Figure 4.1.6, not the stress strain concept. Because tension only and compression only behaviors do not require 

separate inputs for allowable strength and allowable displacement, a user defined function needs to be used for 

application. 

 

d

P

compression

       

tension

P

d

 
(a)  Tension only   (b) Compression only 

 

In Figure 4.1.6, d represents the relative displacement between connected nodes and P represents the 

internal member forces.  

 

Jardine1 suggested the use of material models that define nonlinear behavior to consider the nonlinear behavior 

that occurs in small strain states for clay. 

 

The Jardine model is a nonlinear elastic model that can simulate nonlinear behavior at small strain states, and 

the Tresca model is used for plastic analysis when the stress of the material is larger than the input shear 

strength. Here, the behavior is completely plastic and the stiffening behavior is not considered. 

                                                                 
1 Jardine, R. J., Symes, M. J. and Burland, J. B. "The measurement of soil stiffness in the triaxial apparatus," Geotechnique 

34, No. 3, 323-340, 1984. 

1.6 
Nonlinear Elastic 

Behavior of Elastic Link 

Elements 

Figure 4.1.6 Tension only and 
compression only behavior of 
elastic link elements 

1.7 
Jardine 
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Nonlinear elastic behavior 

The Jardine model derives the nonlinear formula based on the relationship between the secant modulus of 

elasticity and axial strain measured from the undrained triaxial compression test. The undrained triaxial 

compression test applies an incremental load in the axial direction of a cylindrical sample, and the stress along 

the circumferential side is maintained. 

 

The secant modulus of elasticity (
uE ) can be directly calculated from the measured value from the triaxial 

compression test. 

 

;0a a

u

a

E
 




     (4.1.23) 

 

a  : Axial strain 

a  : Axial stress 

;0a  
: Initial(when 0a  ) axial stress 

 

Because the Jardine model assumes the nonlinear relationship between the secant modulus of elasticity and 

axial strain, the modulus of elasticity in the elastic region can be defined using the following equation: 
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   (4.1.25) 

 

A  : Strain at maximum stiffness 

F  : Maximum stiffness value 

G  : Average stiffness value 
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Figure 4.1.7 Jardine parameters 
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A , F , G  can be directly computed from the experimental stiffness-strain curve, and the B , C  

parameters needed for computing  ,  in the following equation are assumed to be the strain at the average 

stiffness and minimum stiffness. In this case, the average stiffness becomes equation (4.1.25) where / 2 input 

is for the cosine term, and the minimum stiffness is where   is input. 

 

log 2

log( / )
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log( / )

C A
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    (4.1.26) 

 

/ 2

log /B A



 

  

    (4.1.27) 

 

F , G  do not need to be the same as the experimental maximum, average stiffness. F is the maximum 

value of the trend line that best fits the data. When the strain is outside the range of the maximum strain (
max ) 

and minimum strain (
min ), the tangent modulus of elasticity is assumed as a constant value.  

 

The general value of 
min represents the minimum strain of the experimental data values. A value that is stable 

in the plastic region needs to be selected for
max . If 

max the value is too large, a negative (-) elastic tangent 

stiffness is computed, which can cause numerical instability. Hence, the 
max value is generally defined to be 

smaller than C . 

 

The equivalent stiffness of the Jardine model is as follows: 

 

     
2 2 2

1 2 2 3 3 1
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3
eq            

 
  (4.1.28) 

1 , 2 , 3  : Major strain at the elastic state 

Here, 
eq can be calculated as 3 a at the stress state of the undrained triaxial test (

1 a  , 

2 3 1/ 2 a     ). 

The tangent modulus of elasticity 
utE can be expressed in the same way as equation (4.1.25), and expressing 

this as a relationship equation with 
eq is as follows: 

 

     1 cosu eqE f G F G I         (4.1.29) 
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And,  
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    (4.1.31) 

 

The equivalent linear strain considering the boundary range
max and 

min is as follows. 

 

min min 3eq  , 
max max 3eq      (4.1.32) 

 

The tangent modulus of elasticity is assumed to be a constant value outside the boundary range, and the general 

form of 
uE can be expressed as follows: 
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 (4.1.33) 

 

The computed average tangent stiffness from equation (4.1.33) is used when calculating the increment strain 

through recursive calculations. When calculating the actual stiffness, the secant stiffness equation (4.1.24) is 

used for accurate computation. 

 

The relationship between the tangent and secant modulus of elasticity in the triaxial test is as follows: 

 

 u aa
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a a

d Ed
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d d



 
     (4.1.34) 

 

The axial incremental stress
a  due to the axial incremental strain

a , found from the relationship between 

the given axial strain and secant modulus of elasticity, can be expressed as follows: 
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        (4.1.35) 

 

To express the relationship between incremental stress and incremental strain linearly, the average modulus of 

elasticity
utE  is used, and can be expressed as follows. 
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eq
 : Renewed equivalent strain 

uE  : Secant stiffness, computed from equation (4.1.33) 

 

The 3D material stiffness matrix can be expressed as follows, using the average modulus of elasticity: 
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D   (4.1.37) 

 

The D-min model is a sectioned linear model applied to general rocks (hard rock, soft rock etc.), proposed by 

Japan Central Research Institute of Electric Power Industry (CRIEPI), Hayashi, Hibino. Sectioned linear models 

have different stiffnesses for each construction step, but are normalized such that the stiffness has a fixed value 

within a construction step. 

 

It is assumed that the modulus of elasticity decreases and the Poisson’s ratio increases as the Mohr circle 

approaches the failure envelope. Hence, the relative distance between the Mohr circle and failure envelope 

determines the modulus of elasticity and Poisson’s ratio of each section. The material property values of this 

model are constant for each load step and so, repeated analysis is not required for each load step. 

 

The failure envelope equation can be expressed as follows: 

 

1

a

R t

 

 

 
  

 
    (4.1.38) 

  :  Hydrostatic stress 

  :  Shear stress 

a  :  Mohr circle coefficient 

t  :  Tensile strength 

R  :  Shear strength 

 

The relationship between the failure envelope and Mohr circle is expressed in Figure 4.1.8 
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Failure is determined using the buffer index ( R ), as shown in Figure 4.1.8. If the buffer index is larger than '1', 

it is in the elastic region and if the buffer index is less than '0', failure is assumed. 

 

 '    0.0 1.0R k R R       (4.1.39) 

 

Here, the modified buffer index is: 

 

min

1 3

'

2
t

d
R

 







    (4.1.40) 

mind
 : Minimum distance between failure envelope and Mohr circle 

k  : Buffer index from user input variable 

 

The factor of safety ( sF ) is as follows: 

 

 1 2

1 3

min ,

2

s

D D
F

 


 
 
 

    (4.1.41) 

 

Here, the buffer index is computed at the integral point, and this can be used to compute the modulus of 

elasticity and Poisson's ratio of the next step: 

 

  

Figure 4.1.8 Failure envelope and 
Mohr circle of D-min model 
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   (4.1.42) 

iE
 : Initial modulus of elasticity 

crE
 : Critical modulus of elasticity 

m  : Nonlinear material coefficient 

i  : Initial Poisson's ratio 

cr
 : Critical Poisson's ratio 

n  : Nonlinear material coefficient 

 

The Mohr circle coefficient ( a ) and buffer index ( k ) increases with the increase in initial modulus of elasticity 

( iE ). The relationship between the Mohr circle coefficient ( a ) of various rocks, buffer index ( k ) and initial 

modulus of elasticity ( iE ) is shown below in table 4.1.2. The data is based on the triaxial compression test and 

was put together by the Japan Road Traffic Information Center in 1986. 

 

Initial Elasticity modulus 

( iE , 2/kgf cm ) 
Buffer index ( k ) Mohr circle coefficient ( a ) 

100 1,000iE 
 2.0 1.0 

1,000 10,000iE 
 4.0 2.0 

10,000 100,000iE 
 6.0 3.0 

100,000 iE
 10.0 4.0 

 

Ground stress-strain behavior becomes nonlinear as it approaches the failure criterion, and this can be simulated 

by modifying the foundation modulus. The function proposed by Duncan and Chang2 is used to calculate the 

foundation modulus. The stress-strain curve of the function is a hyperbola and the foundation modulus is a 

function of confining stress and shear stress. It is very useful because nonlinear material models only need 

material properties that can be easily obtained from the triaxial compression test or literature, 

 

The Duncan and Change nonlinear stress-strain curve displays a hyperbolic form between the axial strain space 

generated by shear stress 1 3  . Three foundation modulus are needed depending on the stress state and 

stress path; the initial modulus iE , tangent modulus tE , and unloading-reloading modulus urE . (Refer to 

Figure 4.1.9) 

 

                                                                 
2 Duncan, J. M., and Chang, C.-Y. “Nonlinear Analysis of Stress and Strains in Soils,” J. Soil Mech. Found. Div., ASCE 

96, 5 (1970), 1629-1653. 

Table 4.1.2 Parameters based on 
initial Elasticity modulus (JARTIC, 
1986) 

1.9 
Hyperbolic Model 

(Duncan-Chang) 



 

 

ANALYSIS REFERENCE Chapter 4. Materials 

Section 1. Elastic Material Properties | 137 

 

 

 

strain

A

C

B

1
3






1

iE

1

urE

tE
1

O
 

 

The modluii and coefficient of the nonlinear elastic model can be obtained from the graph with a vertical axis of 

the ratio between modulus of elasticity and atmospheric pressure ( aE p ) or ratio between bulk modulus and 

atmospheric pressure ( m aB p ), and a horizontal axis of the ratio between maximum confining pressure and 

atmospheric pressure ( 3 ap ) in log scale, as shown in Figure 4.1.10. The initial loading coefficient (K) can be 

obtained when the vertical axis is 
aE p at the point where

3 1ap  and slope at this point can be used to 

calculate the coefficient n  for the initial stiffness. The bulk modulus index m can be found from the slope when 

the vertical axis is m aB p . 

 

n or m
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102

101
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100 101 102
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3/Pa  
 

The bulk modulus mB  is defined by equation (4.1.43). 

 

 
 1 2 3 3

m

v

B
  



  



   (4.1.43) 

Figure 4.1.9 Nonlinear stress-
strain behavior 

Figure 4.1.10 Determination of 
nonlinear ground material 
properties 
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  : Amount of principal stress change, 

v  : Amount of principal stress change, 

 

Initial modulus 

When the ground experiences a ‘0(zero)’shear stress (when
1 3 0   ), the stress-strain behavior is calculated 

using the initial modulus
iE . This initial tangent modulus is controlled by the confining stress

3  and can be 

calculated using equation (4.1.44). 

 

3

n

i L a

a

E K p
p

 
  

 

    (4.1.44) 

iE
 : Initial tangent modulus, a function of confining stress 

LK
 : Loading coefficient 

ap
 : Atmospheric pressure 

3  : Confining stress 

n  : Index for defining the effects of confining stress on initial modulus 

 

If the index n  is 1.0, the initial modulus iE  is directly proportional to the confining stress. If it is ‘0(zero)’, iE  

is unrelated to the confining stress. 

 

If the confining stress is in the tensile state, the initial modulus can be ‘0 (zero)’ or ‘-(negative)’. To prevent this, 

FEA NX sets a lower bound for the confining stress. The set value is 0.01 ap . 

 

Tangent modulus 

The ground is known to follow the load path when it experiences a larger shear stress than it has experienced 

before. The constitutive behavior is dominated by the tangent modulus tE  when the load path is followed. This 

tangent modulus can be defined as a function of the ground material properties, triaxial deviatoric stress

1 3  and confining stress 3 of a Duncan-Chang model. 

 

  
2

1 3

3

1 sin
1

2 cos 2 sin

f

t i

R
E E

c

  

  

  
  

 
   (4.1.45) 

tE
 : Tangent modulus 

iE
 : Initial tangent modulus 

  : Internal friction angle of the ground 
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c  : Cohesion of the ground 

fR
 

: Ratio between maximum shear stress and asymptote of the hyperbola (generally a value 

of 0.75 ~ 1)  

 

Here, the minimum value of 
tE can be restricted. The basic minimum tangent modulus is 

ap . If this value is 

too small, it can cause convergence problems. 

 

Unloading-reloading modulus 

Nonlinear models use the unloading-reloading modulus urE  when the ground is unloading from a large shear 

stress state. This coefficient is calculated in a similar manner to the initial modulus, except that the unloading-

reloading coefficient number
 urK  is used instead of 

LK .  

 

3

n

ur ur a

a

E K p
p

 
  

 
    (4.1.46) 

 

Unlike the tangent modulus, this modulus is not affected by the shear stress. If the unloading-reloading 

coefficient number
urK is not defined, it is defined to be the same as the loading coefficient number

LK .  

 

Friction Angle 

The friction angle can be defined by incremental form according to the confining pressure. 

 

3
0 lg

ap


  

 
    

 
   (4.1.47) 

 

Poisson’s ratio 

The Poisson's ratio of nonlinear models are either set as a constant unrelated to the stress state or calculated 

from the bulk modulus of the soil depending on the confining stress. For the latter case, the bulk modulus can 

be found using equation (4.1.47). 

3

m

m b a

a

B K p
p

 
  

 
    (4.1.48) 

mB
 : Bulk modulus 

bK
 : Bulk modulus number  

m  : Bulk modulus index  

 

The relationship between the Poisson’s ratio and bulk modulus can be defined from the elastic theory, as shown 

in equation (4.1.48). 
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    (4.1.49) 

 

If the Poisson’s ratio in the equation above is ‘0(zero)’, 3mB E and if the Poisson’s ratio is 0.49, 17mB E , 

the calculated Poisson’s ratio is limited to '0 ~ 0.49'. 

And the Poisson’s ratio in Duncan-Chang model can be defined by the experimental constant not the bulk 

modulus. 
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  (4.1.50) 

 

Failure region 

The failure condition of a nonlinear elastic model cannot be defined. However, to show that the shear region is 

large for this material, the failure region is defined as the region that satisfies the following condition: 

 

1 3 1 3 sin cos
2 2

fR c
   

 
 

     (4.1.51) 

 

The failure ratio 
fR in the Duncan-Chang equation is used as shown in equation (4.1.50): 

 

   1 3 1 3ff ult
R          (4.1.52) 

 

The ultimate strength  1 3 ult
  term represents the asymptote which the hyperbolic stress-strain curve 

approaches at high strains. Also,  1 3 f
  is the deviatoric strain at failure. 
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Plastic Material Properties 

FEA NX includes various plastic material models to simulate actual ground and structural phenomena. This 

section briefly introduces the plastic theory used and the properties of each material model. The table below 

lists the available plastic materials for each element. 
 

Failure condition 

Element type 

T
ru

ss
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ll 
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la
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lid
 

S
o
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von Mises ∨    ∨ ∨ ∨ ∨ ∨ 

Tresca       ∨ ∨ ∨ 

Mohr-Coulomb       ∨ ∨ ∨ 

Drucker-Prager       ∨ ∨ ∨ 

Strain-Softening       ∨ ∨ ∨ 

Modified Cam Clay       ∨ ∨ ∨ 

Jointed Rock       ∨ ∨ ∨ 

Modified Mohr 

Coulomb 
      ∨ ∨ ∨ 

Hoek Brown       ∨ ∨ ∨ 

Generalized 

Hoek Brown 
      ∨ ∨ ∨ 

Modified UBCSAND       ∨ ∨ ∨ 

Sekiguchi-Ohta 

(Inviscid) 
      ∨ ∨ ∨ 

Soft Soil       ∨ ∨ ∨ 

Hardening Soil with 

Small strain stiffness 
      ∨ ∨ ∨ 

Section 2 

Table 4.2.1 Available plastic 
materials for each element type 
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Generalized 

SCLAY1S 
      ∨ ∨ ∨ 

CWFS       ∨ ∨ ∨ 

Inverse Rankine    ∨      

GeoGrid    ∨      

Coulomb Friction   ∨       

Janssen   ∨       

 

 

Principal stress invariance 

Principal stress invariance is a convenient method of expressing the yield function. The stress induced at an 

arbitrary point within the material can be expressed using the following equation, which uses the direction 

vector
jn  that defines the principal stress direction: 

 

  0ij ij jn       (4.2.1) 

ij  : Kronecker delta 

 

0jn   in the equation (4.2.1) above, and the necessary and sufficient condition for equation (4.2.1) is as follows: 

 

0ij ij       (4.2.2) 

 

The matrix equation (4.2.2) can be expressed as a cubic equation for principal stress, as shown below: 

 
3 2

1 2 3 0I I I         (4.2.3) 

 

Here,  

     

1

2 2 2 2

2 1

3

3 1 1

1

2

1 1 1

3 2 6

x y z ii

x y y z z x xy yz zx ij ji

x xy xz

yx y yz ij jk ki ij ji

zx zy z

I

I I

I I I

   

          

  

       

  

   

       

   

  (4.2.4) 

 

1I , 2I , 3I  can be expressed using the principal stresses 1 , 2 , 3  as follows. 

2.1 
Failure Criterion and 

Invariance 
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1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I

I

I

  

     

  

  

  



   (4.2.5) 

 

Deviatoric stress invariance 

The stress tensor 
ij can be divided into the hydrostatic pressure and invariant stress components, as shown 

below: 

 

ij ij m ijs        (4.2.6) 

Here,   1/ 3 / 3m x y z I        and represents the average stress. Also, 
ij ij m ijs      is the deviatoric 

stress and represents the pure shear state. 

 

The deviatoric stress invariance can be expressed as shown below: 

 

0ij ijs s      (4.2.7) 

 

Equation (4.2.7) can be expressed as follows: 

 
3 2

1 2 3 0s J s J s J       (4.2.8) 

 

Here, 
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  (4.2.9) 

 

1J , 2J , 3J  can be expressed using the deviatoric principal stresses 1s , 2s , 3s  as follows: 

 

       

 

1 1 2 3

2 2 22 2 2

2 1 2 3 1 2 2 3 3 1

3 3 3

3 1 2 3 1 2 3

0

1 1

2 6
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  (4.2.10) 
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1I , 
2I , 

3I , 
1J , 

2J , 
3J  are all scalar invariants, which have properties independent of the coordinate axes. 

To conveniently express the yield function geometrically, 
1I , 

2J , 
3J  invariants are often used. 

 

Geometric meaning of the three stress invariants 

 

1

2

3

e



r0

O

N

 1 2 3,  ,    P

1 2 3   

 
 

Vector OP  can be defined when point  1 2 3,  ,    P  is expressed as an arbitrary stress state in the principal 

stress space, as shown in Figure 4.2.1. Vector OP  can be divided into vector ON , which follows the hydrostatic 

pressure axis; and vector NP , which exists in the deviatoric plane perpendicular to the hydrostatic pressure axis. 

Their size is as follows:  

 

1

2

1

3

2

I

r J

 

 

ON

NP

    (4.2.11) 

 

Vector NP  needs to be rotated by 0  in the 1  axis to define point P  on the deviatoric plane. Here, 0  is 

called the similarity angle and its equation is as follows: 

 

1 3
0 3/2

2

1 3 3
cos

3 2

J

J
 

 
   

 
   (4.2.12) 

 

Here, 0  has the following range: 

Figure 4.2.1 Stress state definition 
in principal stress space  
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00
3


      (4.2.13) 

 

For numerical analysis, it is more convenient to use Lode's angle  rather than
0 and it can be defined using 

the following equation: 

 

1 3

3/2

2

1 3 3
sin

3 2

J

J
 

 
   

 
   (4.2.14) 

 

Here, 0
6


   and has the following range: 

 

6 6

 
       (4.2.15) 

 

It is often more convenient to express the principal stress as an invariant stress when defining the yield function 

of the material, and it can be rearranged using Lode's angle to give the following equation: 
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   (4.2.16) 

 

 

Plastic materials display permanent deformation on structures even after the external load is removed, unlike 

elastic materials. To express such behavioral properties, strain is formulated following additive decomposition, 

which divides strain into elastic and plastic components, as shown below: 

 
el pl ε ε ε     (4.2.17) 

ε  : Total strain 
el
ε  : Elastic strain 

pl
ε  : Plastic strain 

 

Because Hook's law defines the relationship between deformation and stress in the elastic region, applying this 

to equation (4.2.17) and rearranging gives the following equation for stress: 

 

2.2 
Formulation of Plastic 

Behavior 
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( )el pl  σ Dε D ε ε     (4.2.18) 

σ  : Stress vector 

D  : Material stiffness matrix 

 

The failure criterion defines the plasticity criteria and can be defined differently depending on the material 

properties such as steel or concrete. The material failure criterion can be modeled in function form using various 

experiments on the material. Generally, this function has variables that represent stress and hardening, and can 

be expressed as follows: 

 

( , ) 0f  σ     (4.2.19) 

f  : Yield function 

  : Hardening parameter 

 

If the yield function f  is equal to or smaller than ‘0’(zero), plastic flow does not occur and if f  is larger than 

'0', plastic flow occurs. 

 

Plastic flow rule 

Material failure induces plastic flow, and this plastic flow causes stress redistribution to maintain the equilibrium 

state of the material. The plastic flow calculation is done in nonlinear form and the increment form is generally 

used for formulation. The general values used for calculating the plastic flow in plasticity analysis for materials 

are the incremental stress direction and plastic strain increment direction. The incremental stress direction is as 

follows: 

 

i
i

f



n
σ

     (4.2.20) 

n  : Gradient vector representing the stress increment direction perpendicular to the failure surface 

i  : Number of yield functions 

 

The plastic strain increment can be divided into the size and directional components using Koiter’s law as follows: 

 

1 1

n n
p i

i i i

i i

g
  

 


 


  m

σ
   (4.2.21) 

 

Here, ig is the plastic potential function, which can be expressed as  ,ig σ using stress and hardening 

variable  , generally obtained from material tests. 
i is the plastic multiplier, and it needs to satisfy the 

following Kuhn-Tucker condition: 

 

0f  , 0i  , 0i f     (4.2.22) 
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From the conditions above, plastic flow does not occur when the yield function f  is smaller than 0 and 
i  is 

always 0. When plastic flow occurs (
i is larger than 0), the yield function is always 0. m is the vector that 

defines the plastic strain increment in equation (4.2.21). Here, the method of defining the plastic strain 

increment by /f σ , which uses the yield function f  and not the plastic potential function g , is called the 

associated flow rule and the method which uses the plastic potential function to define the plastic strain 

increment direction by /g σ is called the non-associated flow rule. Using the non-associated flow rule on a 

material model can suppress the excessive cubical expansion phenomena due to the discord between the stress 

direction and strain direction. However, the amount of calculation increases because the stiffness matrix is 

asymmetric and an asymmetric solver needs to be used. 

 

The hardening variable  used for strain hardening can be defined using the dimensionless equivalent plastic 

strain as shown below: 
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  ε Q ε     (4.2.23) 
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Q   (4.2.24) 

 

Stress Return Method 

 

► Implicit backward Euler method 
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X
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yield criterion

 
 

The Implicit backward Euler method can be expressed using the following equation: 

 

C B C σ σ Dm     (4.2.25) 

 

Because the unknown C values exist on both sides of equation (4.2.25), the concept of residual vectors r  is 

introduced to find the value using repeated analysis: 

 

 c B C  r σ σ Dm    (4.2.26) 

 

The residual vector r converges to 0 when the final stress state lies on the failure surface. The new residual 

vector newr for recursive calculations using the 1st order Taylor expansion can be defined using the following 

equation: 

 

new old  


    


m
r r σ Dm D σ

σ
   (4.2.27) 

 

Because the residual vector is 0new r for the converged final stress, substituting this into equation (4.2.27) and 

rearranging for σ gives equation (4.2.28). 

 

   
1

1

old old  



 
        

 

m
σ I D r Dm R r Dm

σ
 (4.2.28) 

 

Also, using the 1st order Taylor expansion on the yield function gives the following equation. 

 

Figure 4.2.2 Implicit backward 
Euler method  
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0T
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f f
f f f h 



 
      

 
σ n σ

σ
  (4.2.29) 

 

Substituting equation (4.2.29) into equation (4.2.28) and rearranging for  gives the following equation: 

 
1

1
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f

h











n R r

n R Dm
    (4.2.30) 

 

► Cutting Plane Method 

X

B

C

eσ

D

yield criterion

 
 

The cutting plane method can be defined as follows with reference to Figure 4.2.3: 

 
e

C X    σ σ σ Dm    (4.2.31) 

 

Defining the stress return direction above at point B in the perpendicular direction modifies equation (4.2.31) as 

follows: 

 

C B B σ σ Dm     (4.2.32) 

 

Also, using the 1st order Taylor expansion on the incremental function gives the following equation. 

 

0C B B B

f f
f f f h  



 
          

 
σ n Dm

σ
  (4.2.33) 

 

Hence, the plastic multiplier increment  is as follows  : 

 

B

B B

f

h
 

n Dm
    (4.2.34) 

 

Constitutive equation 

Figure 4.2.3 Cutting Plane Method 
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The plastic constitutive equation can be composed as follows. The small stress increment is determined by the 

elastic part of the strain increment vector. 

 

 p    σ D ε ε Dε Dm    (4.2.35) 

 

Because the current stress always needs to be positioned on the failure surface, the consistency condition 

0f   needs to be satisfied. Rearranging equation (4.2.35) for the small strain increment gives the following 

equation (4.2.36) for the small stress increment: 

 

h

 
   

 

T
ep

T

Dmn D
σ D ε D ε

n Dm
   (4.2.36) 

 

The ep
D  in equation (4.2.36) is called the continuum tangent stiffness matrix, 

 

When using the consistent tangent stiffness matrix for the Newton-Raphson recursive formula, it converges 

faster than when equation (4.2.36) is used because of the 2nd order convergence property. This 2nd order 

convergence property can be obtained from the following process. First, differentiating equation (4.2.25) gives 

the following equation: 

 


   

 

  
     

  

m m
σ Dε Dm D σ D

σ
  (4.2.37) 

 

Here,   is the change in  . 

 

Equation (4.2.37) can be rearranged as follows: 

 

 Aσ Dε Dm     (4.2.38) 

 

Here, 


  


m
A I D

σ
, 




 

 
  

 

m
m m D  

 

If 1H A D , equation (4.2.38) can be arranged as follows. 

 

  σ H ε m     (4.2.39) 

 

If equation (4.2.39) is rearranged for the total strain term using the consistency condition, the following equation 

can be obtained: 
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h

 
   

 

T
ep

T

Hmn H
σ H ε C ε

n Hm
    (4.2.40) 

 

The ep
D  in equation (4.2.36) is the continuum tangent stiffness matrix, and the ep

C  in equation (4.2.40) is the 

consistent tangent stiffness matrix.  

 

 

The von Mises failure condition assumes that failure occurs when the 2nd order invariant of deviatoric stress 2J  

reaches a certain value. This condition is often used to simulate plastic behavior of metallic materials. The 

perfect plastic failure condition that does not consider hardening can be expressed using the following equation: 

 

2

3
( ) 3 : 0

2
y dev dev yf J      σ σ σ    (4.2.41) 

devσ  : Deviatoric stress 

y
 : Failure stress 

 

Because only the deviatoric stress is used to express the failure condition, it is appropriate in expressing the 

ductile materials where failure occurs regardless of hydrostatic pressure. The radius of the von Mises failure 

surface in 3D stress state is 2 / 3 y , and surface is expressed as a cylinder parallel to the hydrostatic axis. 

 

 
 

1

1 2 3   

2

3

2.3 
von-Mises 

Figure 4.2.4 von Mises failure 
surface in principal stress 
coordinate system 
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The associated plastic flow is assumed for the von Mises failure condition. The plastic strain variation is as 

follows: 

 

3

2 :

pl

dev

dev dev

f
d d d 


 


ε σ

σ σ σ
   (4.2.42) 

 

Hardening factor 

FEA NX supports isotropic, kinematic and combined hardening model in von-Mises yield function. In the case of 

isotropic hardening, the central axis of initial yield surface isn’t change since it supposes that the initial yield 

surface expands uniformly. 

 

2

3
( , ) 3 ( ) : ( ) 0

2
y dev dev yf J      σ q q σ σ q

  (4.2.43) 

 

 

·

Initial yield surface

1

2

Isotropic hardening

Figure 4.2.5 von Mises failure 
surface shape in the meridian 

plane for
6


    

Figure 4.2.5-1 Change of the yield 
surface of isotropic hardening 
model 
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The hardening factor of isotropic hardening model consists of effective plastic strain such as    pe  q . 

The yield stress due to hardening is given by the function of effective plastic strain, ( )y pe  and directly uses 

the hardening function, ( )y ph e . 

The combined hardening model supposes that expansion and movement of the yield surface occurs 

simultaneously by plastic deformation. In the combined hardening model, the yield surface is defined by yield 

stress and back stress as follows: 

 

3
( , ) : ( ) 0

2
dev dev yf   σ q Σ Σ q    (4.2.44) 

devΣ  : dev σ α  

α  : back stress 

 

 
 

The hardening factors of combined hardening model are effective plastic strain and back stress. 

 

pe  
  
  

q
α

    (4.2.45) 

 

The yield stress is calculated from hardening function using the combined variable c  as follows: 

· ·

Combined hardening

Initial yield surface

1

2

Kinematic hardening

Figure 4.2.5-2 Change of the yield 
surface of combined hardening 
model 
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(0) (1 ) ( )y c y c y ph h e        (4.2.46) 

 

In case of the combined variable, 0c  , it is isotropic hardening and kinematic hardening when 1c  . The 

plastic strain of combined hardening and the change rate of back stress which follows hardening rule of Ziegler 

can be expressed using the following equation: 

 

3

2 :

pl

dev

dev dev

d dε Σ
Σ Σ

    (4.2.47) 

y pl

c

p

dh
d d

de
α ε      (4.2.48) 

 

Hardening curve 

The hardening curve is a material property which expresses plastic property of material. It is generally obtained 

from test and uniaxial tension/compression test or pure shear test is widely used. The hardening curve in FEA 

NX consists of inputting true stress-plastic strain curve and the conversion process from test result is as follows: 

 

If you know load-displacement curve, true strain and true stress can be calculated using the following equation. 

 

0

0 0 0

log log ,
L d L Pe

L L A



 
   

        
   

  (4.2.49) 

0,L L  
: Length of before/after deformation 

0A  
: Area of before deformation 

 

If you know engineering stress-strain, it can be calculated as follows: 

 

 log 1 ,E Ee     
    (4.2.50) 

,E E   
: Engineering strain/stress 

 

Since the plastic strain begins to occur from the moment that the material yield, it can be calculated ad follows: 

 

el
pe

E


     

    (4.2.51) 

E  
: Elastic modulus 
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The Tresca criterion was originally developed to be used on failure conditions of metallic materials. In 

geotechnical analysis it is often used to simulate the ground material behavior for undrained conditions. The 

failure condition for this criterion can be expressed using the uniaxial compression strength, as shown below. 

 

3 1 y        (4.2.52) 

y
 : uniaxial compression strength 

 

Equation (4.2.52) can be expressed using the stress invariant term 
2J and

0 , as shown in equation (4.2.53). 

0(0 60 )   

 

1 3 2 0 0

1 2
cos cos

33
yJ     

  
      

  
  (4.2.53) 

 

Rearranging this equation: 

 

 2 0 2 0

1
, 2 sin 0

3
yf J J   

 
    

 
   (4.2.54) 

 

Or, it can be expressed using the terms 
1 2, ,I J  as follows. 

6 6

 


 
   
 

 

 

 2 0 2

2

2 2 4
, sin sin

3 33

2 cos 0

y

y

f J J

J

     

 

    
        

    

  

  (4.2.55) 

 

The effects of hydrostatic pressure on the failure plane are not considered for this criterion and so, it is unrelated 

to
1I . The Tresca failure criterion is a hexagonal column parallel to the hydrostatic axis in the principal stress 

space, as shown in Figure 4.2.6, and is expressed as a regular hexagon in the deviatoric plane, as shown in Figure 

4.2.7(a). 

 

According to the experimental results, the shear strength of the saturated soil is unrelated to 
1I  for undrained 

loading. The Tresca model can obtain appropriate results under these conditions:  

 

  

2.4 
Tresca 
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(a) Failure surface shape in  plane            (b) Failure surface shape in the meridian plane for 
6


    

 

If the von Mises and Tresca criteria are congruent for
0( 0 )cr    and 

0( 60 )tr   , the von Mises surface 

becomes a circle that circumscribes the Tresca hexagon (Figure 4.2.7(a)) in the deviatoric plane. In this case, the 

expected maximum difference in failure stress occurs along
0( 30 )  , and the failing shear stress ratio 

between the von Mises and Tresca criteria is 2 / 3 1.15 . If the two criteria are conformed for simple shear, 

1

1 2 3   

2

3

Figure 4.2.6 Tresca failure surface 
shape in principal stress space 

Figure 4.2.7 Tresca failure surface 

shape in  plane and meridian 

plane 
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the von Mises circle inscribes the Tresca hexagon, and the maximum error between the two criteria occur along 

0( 0 )  and
0( 60 )  . 

 

1

2
3



r
tr

cr

Von mises

Tresca

1

2
3


r

Von mises

Tresca

 
(a) Relation with Tresca-Circumscription in  plane (b) Relation with Tresca-Inscription in  plane 

 

The Mohr-Coulomb model is used to simulate most terrain and it displays sufficiently reliable results for general 

nonlinear analysis of the ground. 

 

 

Mohr-Coulomb

Real soil

 



n

constant:

 
 

FEA NX can simulate changes in the modulus of elasticity and cohesion with height for a Mohr-Coulomb model 

using equation (4.1.4). If the amount of cohesion change with height is ‘0(zero)’, a constant value is used. If the 

amount of change is not ‘0(zero)’, the cohesion can be calculated with respect to a reference height using 

equation (4.2.56). 

 

   

 

            

                                    

ref ref inc ref

ref ref

c c y y c y y

c c y y

   

 
   (4.2.56) 

Figure 4.2.8 von Mises and Tresca 
failure surface shape 

2.5 
Mohr-Coulomb 

Figure 4.2.9 Yield function of 
Mohr-Coulomb model 
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refc
 : Input cohesion value 

incc  : Cohesion increment with respect to depth 

refy
 

: Depth at which 
refc is measured 

 

The y in equation (4.2.56) represents the integral position of the element. If the integral position is located 

higher than 
refy , the cohesion can be smaller than '0'. To prevent this, the cohesion value is not decreased any 

further and the 
refc  value is used. 

 

Yield function of Mohr-Coulomb model 

According to Mohr(1900), failure can be expressed using the following equation: 

 

tannc        (4.2.57) 

 

 

 

 

 

Here, the limit shear stress   of an arbitrary plane is only related to the normal stress n  of the same plane. 

Equation (4.2.57) shows that material failure occurs at the stress state where the largest Mohr circle comes 

across the Coulomb friction failure envelope. It also shows that the intermediate principal stress

2 1 2 3( )     does not have an effect on the failure condition. 

 

Hence, the yield function of the Mohr-Coulomb failure plane is as follows: 

 

tan 0nf c         (4.2.58) 

 

The failure criterion of equation (4.2.58) is called the Mohr-Coulomb criterion and it is the most widely used 

method for ground materials due to its simplicity and accuracy. 

 

Expressing the Mohr-Coulomb criterion using principal stress terms
1 2 3( )    , equation (4.2.58) can be 

rearranged into the following equation: 

 

1 3 1 3

1 3

31

sin cos
2 2

1 sin 1 sin
1

2 cos 2 cos

1

t c

c

c c

f f

   
 

 
 

 



 
  

 
 

 
 

   (4.2.59) 

c  : Cohesion 

  : Internal friction angle 
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2 cos

1 sin
c

c
f




 

  
: Uniaxial compressive strength when maximum principal stress is 0 

2 cos

1 sin
t

c
f




 

  
: Uniaxial tensile strength when minimum principal stress is 0 

 

Equation (4.2.59) provides convenience when defining material properties because it uses the uniaxial 

compressive and tensile strengths. 

 

13




cosc 

c

1 3 sin
2

 





1 3

2

 

1 3

2

 








yield envelope

 
 

Equation (4.2.58) can be expressed using terms 
1 2,I J  and  , which are often used in numerical analysis. 

 

 1 2 1 2

1 1
, , sin cos sin sin cos 0

3 3
f I J I J c     

 
      

 
 (4.2.60) 

 

Assuming associated flow for the plastic potential function gives the following equation: 

 

 1 2 1 2

1 1
, , sin cos sin sin cos 0

3 3
g I J I J c     

 
      

 
 (4.2.61) 

 

The Mohr-Coulomb criterion is an irregular hexagonal pyramid with a straight meridian in the principal stress 

space, as shown in Figure 4.2.11, and the deviatoric shape in the   plane 
1 2 3( 0)     is an irregular 

hexagon. To draw the irregular hexagon, the lengths 
0tr  and 

0cr are required and can be expressed as follows: 

Figure 4.2.10 Geometric diagram 
of principal stresses 
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0

2 6 cos

3 sin
t

c
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    (4.2.62) 

0

2 6 cos

3 sin
c

c
r







    (4.2.63) 

 

The 
0 0/t cr r  from equations (4.2.62) and (4.2.63) is as follows: 

 

0

0

3 sin

3 sin

t

c

r

r









    (4.2.64) 

 

Because the deviatoric sections of the Mohr-Coulomb failure surface are all geometrically similar, the ratio 

/t cr r  is always constant for an arbitrary deviatoric section. 

 

0

0

3 sin

3 sin

t t

c c

r r

r r






 


    (4.2.65) 

 

If the tensile strength is input, the tensile principal stress of the Mohr-Coulomb cannot surpass the input tensile 

strength. FEA NX applies a complex of the Mohr-Coulomb failure function and the tensile Rankine failure 

function to consider Mohr-Coulomb failure with allowed tensile strength. 

 

In the Mohr-Coulomb model tensile strength can be considered based on two types: Pressure and Rankine.  

 

- In the first “pressure type” method, the average of the principal stresses can not exceed the tensile strength:  

1 2 3

3
t

  


 
  

- For Rankine type the maximum principal stress should not exceed the tensile strength.  
 

1 t   
 

For more information on the Rankine model, see Section 2.14. 
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Figure 4.2.11 Mohr-Coulomb 
failure surface shape in principal 
stress space 



 

 

162 | Chapter 1. 개요 

 

162 | Section 2. Plastic Material Properties 

 

 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

1

2 3


r

0cr
0tr

 

6


  

0

2 6 cos

3 sin
t

c
r








6


 

3 cotc 

hydrostatic axis

d
e

v
ia

to
ri
c
 a

x
is

0

2 6 cos

3 sin
c

c
r








 

(a) Failure surface shape in  plane           (b) Failure surface shape in the meridian plane for 
6


    

 

As shown in Figure 4.2.12(b), tan corresponding to the slope of the straight failure surface of the Mohr-

Coulomb failure criterion does not change with the confining pressure (or hydrostatic pressure). Hence, the 

criterion is accurate when the confining stress is within a limited range, but it does not agree with actual physical 

phenomena when the confining stress is larg enough to cause compressive failure. However, this criterion gives 

highly accurate results within the confining stress ranges of the field and it is easy to use. Hence, it is the most 

widely used failure model. 

 

 

The Drucker-Prager model3 was developed to solve the numerical problems that occur on the corners of the 

yield shape of the Mohr-Coulomb model. This model is an expansion of the von Mises model and because the 

function is defined such that the deviatoric stress can increase or decrease depending on hydrostatic pressure, 

it is also called the Extended von Mises criterion. 

 

Yield function of Drucker-Prager model  

Thye Drucker-Prager failure criterion ( f ) and plastic potential function( g ) can be expressed using the stress 

invariant terms 
1I  and 

2J as follows: 

 

 

 

1 2 2 1

1 2 2 1

, 3 0

, 3 0

f I J J I c

g I J J I

 



   

  
    (4.2.66) 

Here,  ,  ,  are as follows: 

                                                                 
3 Drucker, D. C. and Prager, W. “Soil mechanics and plastic analysis for limit design,” Quarterly of Applied Mathematics, 

vol. 10, no. 2, 1952, pp. 157–165. 

Figure 4.2.12 Mohr-Coulomb 

failure surface shape in  plane 

and meridian plane 

2.6 
Drucker-Prager 
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 , 
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3 sin







 , 

2sin
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    (4.2.58) 

 

The Drucker-Prager failure surface can be expressed in the principal stress space, as shown in Figure 4.2.13. This 

failure surface has a conical shape with the hydrostatic axis (
1 2 3    ) as its center. The Drucker-Prager 

failure surface can be thought of as a Mohr-Coulomb failure surface with no edges, or it can be thought of as the 

expanded form of the von Mises failure surface for materials that depend on hydrostatic pressure, such as soil. 

If it is assumed to circumscribe the outer boundary of the Mohr-Coulomb failure surface, then and  can be 

expressed as follows. 

 

 
1/2

2

tan

9 12 tan









,  
 

1/2
2

3

9 12 tan






  (4.2.68) 
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Figure 4.2.13 Drucker-Prager 
failure surface shape in principal 
stress space 
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(a) Failure surface shape in  plane       (b) Failure surface shape in meridian plane 

 

 

FEA NX provides the strain softening model with the stress-strain curve shown in Figure 4.2.15. This stress-strain 

curve is composed of 3 linear sections. The linear sections are the elastic section to peak shear strength, the 

strain softening section from peak to residual shear strength, and the constant residual shear strength section. 

 

strainresidual

peak,
uc

s
h

e
a

r 
s
tr

e
n

g
th

elastic strain 

softening  
 

Failure criterion 

The strain softening model of FEA NX is an elastic-soft plastic model that uses the von Mises model. The 

softening behavior is isotropic softening behavior and is formulated based on the strain softening theory. The 

yield function of the strain softening model can be expressed using the shear stress and shear strength terms, 

as shown in equation (4.2.69). 

 

 23 3 uf J C      (4.2.69) 

Figure 4.2.14 Drucker-Prager 

failure surface shape in  plane 

and meridian plane 

2.7 
Strain Softening 

Figure 4.2.15 Strain softening 
composition relationship 
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Here, the shear strength 
uC  can be expressed using the softening coefficient   as shown in Figure 4.2.15 

using equation (4.2.70): 

 

when   0

when   0<

when   

u

u u res

res res

C

C C R

C



  

 




  
 

   (4.2.70) 

uC  : Maximum cohesive shear strength 

resC  : Residual cohesive shear strength 

  : Softening coefficient 

res  : Softening coefficient at intersection of residual strength line and softening line 

R  : Softening rate 

 

The softening coefficient  is a control variable that controls the plastic softening behavior and is calculated 

from the principal plastic strain. The principal plastic strain of the von Mises model is as follows: 

 

1 2 3

p

1 2 3
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ε m    (4.2.71) 

 

Here, 
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P   (4.2.72) 

 

The softening coefficient   can be calculated from the following equation and the  -
uC  relationship is 

shown in Figure 4.2.16. 

 

 
T

p p2
 

3
  ε Q ε     (4.2.73) 
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Simulating clay like materials as elastic-plastic hardening materials is a widely used concept (Britto and Gunn4). 

The Modified Cam-clay model provided in FEA NX is also based on the elastic-plastic hardening theory. 

 

Formulation of the Modified Cam-clay model in FEA NX uses all effective stresses and is materialized using 

nonlinear elastic and the implicit backward Euler method (R.I. Borja5). Nonlinear elastic behavior represents the 

increase in bulk modulus when pressure is applied to the material. Also, the associated flow rule is used and the 

failure surface can increase or decrease depending on hardening/softening behavior. 

Figure 4.2.17(a) displays the relationship between the ground volume change and hydrostatic pressure using the 

normal consolidation line and over-consolidation line, or swelling line. If the stress increases and surpasses the 

hydrostatic pressure, the volume change follows the over-consolidation line. If the increase in hydrostatic 

pressure is enough, the volume change passes through the intersection of the normal and over-consolidated 

lines and follows the normal consolidation line.  

 

Rotating Figure 4.2.17(a) in the counter clockwise direction by 90°shows similarities with the elastic-plastic 

hardening stress-strain curve in Figure 4.2.17(b). In other words, the overconsolidation line corresponds to the 

initial linear elastic section and the normal consolidation line corresponds to the hardening plastic stress-strain 

relationship. 

 

  

                                                                 
4 Britto, A. M., Gunn, M. J.  Critical state soil mechanics via finite elements, Ellishorwood Limited, 1987. 
5 Borja, R. I., “Cam-clay plasticity, Part II: Implicit integration of constitutive equation based on a nonlinear elastic stress 

predictor,” Computer  Methods in Applied Mechanics and Engineering, Vol. 88, Issue 2, 1991, pp. 225-240. 

Figure 4.2.16 Definition of 
softening behavior 

2.8 
Modified Cam-Clay 
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(a) Volume-hydrostatic pressure relationship  (b) Stress-strain relationship 

 

Figure 4.2.18 displays the pressure, volume and critical state line relationship. M  is defined as the slope of the 

critical state line in Figure 4.2.18(a) projected onto the p q   plane, as shown in Figure 4.2.18(b).  

 

critical state line

q

P

M

isotropic normal 
consolidation line

critical state line

overconsolidation line


k



ln(1)
ln P

V

 
(a) Pressure and specific volume relationship      (b) Critical state line 

 

Symbol Significance 

  Slope of over-consolidation line 

  Slope of normally consolidation line 

M  Slope of critical state line 

 

The material properties of the ground are generally obtained from 1D consolidation experiments. The 

compression index cC  and recompression index sC  are generally obtained from the void ratio, e  and 

 10log p graph. The compression index and recompression index have the following equation using the slope 

of normal consolidation line   and slope of over-consolidation line  : 

 

Figure 4.2.17 Similarity between 
volume-hydrostatic pressure and 
stress-strain relationships 

Figure 4.2.18 Critical state line 

Table 4.2.2 Modified Cam-clay 
material properties 
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,
2.303 2.303

c sC C
       (4.2.74) 

 

The slope of the critical state line M can be estimated from the relationship with the effective shear resistance 

angle (shear resistance angle from drained tests).  

 

6sin

3 sin
M






     (4.2.75) 

  : Internal friction angle, calculated from triaxial compression test 

 

  can be calculated using the following equation, after the specific volume N  of the normal consolidation 

line at 1.0p  is found from Figure 4.2.18(a).  

 

 ln 2N          (4.2.76) 

 

The yield function of Modified Cam-clay is as follows, and it displays an elliptic shape: 
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    (4.2.77) 

cp  : Pre-consolidation pressure 

M  : Slope of critical state line 

'ij
 : Effective stress 
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When the ground reaches the critical state, the following relationship is satisfied: 

 

q Mp      (4.2.78) 

 

The size of the Modified Cam-clay model failure surface is determined by cp . In other words, increasing cp

increases the failure surface and can simulate hardening behavior, and reducing cp  can simulate softening 

behavior. The hardening/softening equation for Modified Cam-clay models can be obtained from the following 

process: 

 

Firstly, the volumetric strain change and its relationship with the specific volume change are defined by the 

following equation: 

 

1
v

dV dv
d

V e
  


    (4.2.79) 

e  : Void ratio 

v  : Specific volume 

v  : Volumetric strain  

 

Also, the additive decomposition of strain is assumed for the Modified Cam-clay model as shown below: 

 
e p

v v vd d d        (4.2.80) 

 

The following equation can be obtained from equations (4.2.79) and (4.2.80). 

 

Figure 4.2.19 Yield function of 
Modified Cam-clay model 
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  (4.2.81) 

 

The v  and cp  relationship can be rearranged using Figure 4.2.20. 
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    (4.2.82) 

 

Rearranging equations (4.2.81) and (4.2.82) are as follows: 
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    (4.2.83) 

 

Integrating equation (4.2.83) gives the following hardening/softening equation:  
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    (4.2.84) 

 

Also, Modified Cam-clay material models have the following nonlinear elastic properties: 

Figure 4.2.20 Pressure and 
specific volume relationship 
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    (4.2.85) 

K  : Bulk modulus 

G  : Shear modulus 

e  : Void ratio 

 

However, the effective pressure is unknown when calculating the initial stress state and so, the given linear 

elastic modulus is used. 

 

To use the Modified Cam-clay model, the initial void ratio, in-situ stress and initial pre-consolidation pressure

cp is required. FEA NX uses a direct input value or a value automatically calculated from in-situ stresses and 

over-consolidation ratio (OCR) for the pre-consolidation pressure cp . The user needs to input the initial void 

ratio. 

 

The over-consolidation ratio (OCR) is defined using equation (4.2.86). The max'p is the maximum effective 

hydrostatic pressure on the material, and 'vp is the initial effective hydrostatic pressure. Generally, the 

maximum effective normal stress experienced by the ground is determined from oedometer tests. 

 

max'

'

p
OCR

p
     (4.2.86) 

 

For a clear explanation, it is assumed that the shear stress does not exist and the gravitational direction is the y 

axis. Then, the in-situ stress becomes equation (4.2.87).  

 

 0 0 0 0 0 0 0
T

X Y Z     σ    (4.2.87) 

 

To calculate cp , first use the OCR and equations (4.2.88) and (4.2.89) to calculate maxp and maxq . 

 

 max 0 0 0OCR OCR OCR 0 0 0
T

X Y Z     σ   (4.2.88-a) 

 max 0 0 0 0 0OCR OCR OCR 0 0 0
T

Y Y YK K     σ   (4.2.88-b) 
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The 0K condition is also applied to equation (4.2.88-b). 0K  can be estimated from the internal friction angle 

using the following equation: 

 

0 1 sinh

v

K






  


    (4.2.90) 

h  : Horizontal direction effective stress 

 

FEA NX uses equation (4.2.77) to calculate cp . If the user inputs the cp value directly, FEA NX tests whether the 

input value and in-situ stress state satisfy equation (4.2.77) and adjusts the value when it is not satisfactory. 

 

 

General ground surface strata have brittle fracture surfaces, and these are called 'joints' for rock models. The 

material models that reflect these properties are called jointed rock models.  

 

Jointed rock models are transversely isotropic perfectly plastic material models. The material can have 

transversely isotropic properties depending on the rock layer characteristics in the elastic region. In other words, 

rock layers have isotropic properties in the layer direction, but have anisotropic properties in the normal 

direction to the layer. The perfectly plastic behavior is based on the Coulomb friction function in the major joint 

direction. Hence, perfect plasticity occurs in the major joint direction when maximum shear stress is reached. 

The major joint direction can be defined in a maximum of 3 directions and the first major joint direction is equal 

to the transversely isotropic material direction. 

 

Orthotropic elastic material stiffness 

The elastic material behavior of jointed rock models are already explained for transversely isotropic elastic 

materials above. 

 

Plastic behavior in 3 directions 

The yield function in the major joint direction i can be defined using equation (4.2.82): 

 

2 2 tani s t n i if c           (4.2.91) 

  

2.9 
Jointed Rock 
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τ

n

tan i
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To examine the plasticity condition for each failure surface, stress transformation to the local coordinate system 

( n , s , t ) is required. 

 
T

nst i XYZσ T σ     (4.2.92) 

nstσ  : Stress in local coordinate system 

XYZσ  : Stress in material coordinate system 

iT  : Transformation matrix in the i active plane 

 

The general 3D transformation matrix that considers the dip angle and dip direction is as follows: 

 
2 2 2 2 2 2x y z x y y z z x

T

i x x y y z z x y y x z y y z z x x z

x x y y z z y x x y y z z y z x x z

n n n n n n n n n

n s n s n s n s n s n s n s n s n s

n t n t n t n t n t n t n t n t n t

 
 

    
    

T   (4.2.93) 

 

Here, the 3D 
in , 

is , 
it  is as follows: 

 

1 3 1 3 3

1 3 1 3 3

1 1

sin cos cos cos sin
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cos sin 0

i i i

    

    

 

      
     

           
          

n s t   (4.2.94) 

 

Expressing the local coordinate system by rotation in the GCS is as follows: 

  

Figure 4.2.21 Yield criterion for 
individual planes 
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The Modified Mohr-Coulomb model is the expanded version of the Mohr-Coulomb model, and is a specialized 

model for silt or sand. Modified Mohr-Coulomb models are complex material models which combine nonlinear 

elastic and plastic models. 

 

Nonlinear elastic 

The Modified Mohr-Coulomb model defines the elastic region as nonlinear elastic and the power-law is used to 

obtain the elastic volumetric stress-strain relationship. In other words, the tangent compression modulus is 

expressed as a water supply form of the current hydrostatic pressure, as shown below: 

 
1 m

t ref

ref

p
K K

p



 
  

 
 

    (4.2.95) 

refK
 : Reference coefficient of compressibility 

refp
 : Reference pressure 

m  : Rational number, '0.5' used for sand 0 1m   

 

The following equation can be expressed by considering the tensile pressure (
tp ): 

 
1 m

t
t ref

ref

p p
K K

p



 
  

 
 

    (4.2.96) 

 

Figure 4.2.22 MCS from dip angle 
and dip direction  

2.10 
Modified Mohr-Coulomb 
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Here, the tensile pressure is a numerical invention used to consider the tensile stress when an in-situ pressure of 

'0' is assumed. However, actual soil analysis nearly always considers non-zero in-situ stresses. 

The equation (4.2.96) above is derived as the volumetric stress-strain relationship, as shown in the equation 

(4.2.97): 

 
1m

et
ref V

ref

p p
dp K d

p




 
 

 
 

   (4.2.97) 

 

Integrating equation (4.2.97) and rearranging gives equation (4.2.98): 

 

    
1

1

0

m m e em

t t ref ref V Vp p p p mp K F           (4.2.98) 

 

Yield function 

The failure surface of the Modified Mohr-Coulomb model is a decoupled double hardening model, where shear 

failure and compressive failure do not affect each other. This coupled failure surface has the following equation 

in the p q  space: 

 

 
 

 
 

1

1

2

2 2

2

2

6sin
0

3 sin

0c

q
f p p

R

q
f p p p

R



 




    


 
       

 

   (4.2.99) 

1f  : Shear yield function 

2f  : Compressive yield function 
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Figure 4.2.23 Shape of yield 
function in p-q plane 
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The functions  1R  ,  2R   of equation (4.2.99) model the strength difference between triaxial compression 

and triaxial tension as a function of . The Modified Mohr-Coulomb model can be expressed in the same way 

as a Mohr-Coulomb model using functions  1R  ,  2R   in the deviatoric plane. 

A relationship like the one found in equation (4.2.100) is derived to fit the triaxial tensile Mohr-Coulomb model. 

 

  1
1

1

1 sin 3

1

n

R
 




 
  

 
   (4.2.100) 

 

Here, n = -0.229 . 

 

1 is coupled with the friction angle, as shown in equation (4.2.101). 
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   (4.2.101) 

 

Here, 
1 0.7925  . 

 

The maximum value of 
1  is the friction angle (  ) 46.55°. Also, the shape of the compression cap can be 

modified using  2R  .  2R   is the same as equation (4.2.102) below. 
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   (4.2.102) 

Figure 4.2.24 Shape of yield 
function in deviatoric plane 



 

 

 Section 2. Plastic Material Properties | 177 

 

 

 

ANALYSIS REFERENCE Chapter 4. Materials 

 

Here, n = -0.229 and the cap is circular when the basic value ‘0’ is used for
2 . 

 

Flow rule 

The plastic potential function in the p q plane can be expressed as follows. For the Modified Mohr-Coulomb 

model, it is applied to 2 faces that consider shear and compression. 

 

 

 

1

2 2 2
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   (4.2.103) 

 

Here, the dilatancy angle  can be expressed using the friction angle  , as shown in equation (4.2.104). 

 

sin sin
sin

1 sin sin

cv

cv

 


 





   (4.2.104) 

sin cv  : Friction angle when volume is constant 

 

Hardening behavior 

Two types of shear and compression hardening behavior are applied in the Modified Mohr-Coulomb model. 
The shear hardening behavior is determined by the friction angle and can be expressed as the following 
equation. If the shear hardening occurs, the dilatancy angle is recalculated by the Row’s rule6 (4.2.104). 
 

 sin sin       (4.2.105) 

2

3
  

p p
γ γ     (4.2.106) 

  : Equivalent deviatoric plastic strain 

pγ  : Deviatoric plastic strain 

 

The compression hardening behavior is expressed by the pre-consolidation stress as the following equation. 
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m m
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c ref v
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   (4.2.107) 

cP  : Pre-consolidation stress 

                                                                 
6 ROWE, P. W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.  

Proc. Roy. Soc. London A269 (1962), 500-527. 
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0cP  : Pre-overburden pressure 

  : Compression cap hardening parameter 

 

 

Hoek and Brown 7  suggested the use of the equivalent continuum concept to define the stress reduction 

phenomena due to failure of jointed rocks. Hoek and Brown first suggested a failure function to separate intact 

rock and broken rock. After the failure is defined, the stress reduction phenomena were simulated by decreasing 

the particular coefficient values that define the failure function. This method suggested by Hoek and Brown 

defines the uniaxial compressive strength, which cannot be considered in the existing Mohr-Coulomb method. 

This allows for the accurate and simple representation of rock behavior. 

 

Yield function 

The failure criterion suggested by Hoek and Brown is as follows. The intermediate principal stress (
2 ) term is 

ignored in this failure criterion.  

 

2

1 3 3

1 2 3

c cm s    

  

  

 
   (4.2.108) 

c  : Uniaxial compressive strength 

m , s  : Empirical coefficient for defining rock failure 

 

The yield function ( f ) can be expressed using the stress invariant as follows: 

 

2 21
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sin
4 cos 2 cos 0

33
c c c

I
f J m m s


    

 
       

 
  (4.2.109) 

1I  : First order invariant 

2J
 : Second order invariant 

c  : Uniaxial compressive strength of the rock ( / 6 / 6     ) 

 

In the principal stress space, the Hoek-Brown model has a diverging hexagonal pyramid shape along the 

hydrostatic axis and its deviatoric plane shape is expressed as an angular hexagonal shape made up of 6 curved 

surfaces. This hexagonal shape has an edge where the curved surfaces meet, and this creates difficulties. To 

solve this problem, FEA NX processes these edges as curved surfaces using the modified Hoek-Brown criterion 

suggested by Wan8. 

                                                                 
7 Hoek, E. and Brown, E. T., “Empirical strength criterion for rock masses,” Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 106, Issue GT9, 1980. 
8  Wan, R. “Stress return solution algorithm for generalized Hoek-Brown plasticity model,” Proceedings of the 8th 

2.11 
Hoek-Brown 
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2 2 * * 2( ) ( ) 3 0c c cf q g qg p s            (4.2.110) 

 

Here, * / 3c cm  , 
23q J , 

1 / 3p I  and the ( )g   used to define the deviatoric plane shape is as follows: 
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   (4.2.111) 

 

Here, 2 2 24(1 )cos ( / 6 ) 5 4D e e e       

 

Figure 4.2.25 displays the shape of the Hoek-Brown model in the stress space. 

 

 
 

 

The Coulomb friction model assumes that the frictional force is proportional to the size of the value obtained by 

multiplying the coefficient of friction and the tangent direction force. FEA NX defines the yield function of the 

model using the equation below:  

 

2 tan ( ) ( ) 0t nf t c     t     (4.2.112) 

tt
 : Lateral direction force 

nt  : Normal direction force 

  : Internal friction angle 

                                                                 

International Conference of the Association for Computer Methods and Advances in Geomechanics, Morgantown, USA, 

1994, pp. 719-724. 

1

1 2 3   

2
3

Figure 4.2.25 Hoek-Brown failure 
surface 

2.12 
Coulomb Friction 
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c  : Cohesion 

  : Size of plastic relative displacement 

 

In FEA NX, the internal friction angle and cohesion can be set as a functional value that depends on the plastic 

relative displacement. 

 

The equation above can be expressed as Figure 4.2.26. FEA NX supports additional tensile strength inputs to 

express brittle behavior in the tensile direction. 

 

c

/ tanc 

tensile strength

tt

nt


 
 

The plastic relative displacement pu  can be defined using the plastic multiplier, which represents size and 

plastic direction components as shown below: 

2 tan

p

t n

g

g t






 



 

u
t

t

    (4.2.113) 


 : Dilatency angle 

  : Plastic multiplier 

 

 

Here, the plastic multiplier can be calculated from the map regression method. 

The Janssen model, which is applied to the rotational DOF of shell interface elements, simulates the nonlinear 

elastic relationship between the moment and rotational displacement. FEA NX provides for the Coulomb 

friction model and Janssen model for shell interface elements. The Coulomb friction model is used to define the 

normal and lateral direction forces. 

 

Figure 4.2.26 Coulomb friction 
function 

2.13 
Janssen 
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  (4.2.114) 

xt / xu  : Normal interface traction / Normal relative displacement 

yt , 
zt  : Tangential interface traction 

ym , 
y  : Axial moment / rotation angle 

b  : Thickness of shell interface element  

nK
 : Tangential stiffness 

 

Only perfectly plastic behavior is supported for Coulomb friction models used on shell interface elements.  

 

 

Geogrids are reinforcing structures used to strengthen the ground and have only the tensile only structural 

behavioral properties. When selecting the geogrid element in FEA NX, the inverse Rankine model applied on a 

truss elements is used for 2D models and the inverse Rankine model applied on a plane stress element is used 

for 3D models. Here, the allowable compressive strength is '0(zero)'. The inverse Rankine model only needs to 

be computed using the opposite sign from the Rankine model defined below. 

 

The Rankine material failure assumes that failure occurs when the maximum principal stress ( max ) reaches the 

tensile strength and the yield function is as follows:  

 

 max 0tf          (4.2.115) 

 

Expressing equation (4.2.115) using the invariants 1 2,  ,  I J   are as follows. 

 

  1
2

2

33

I
f J A      (4.2.116) 

 

Here, 𝐴(𝜃) is 

 

2.14 
Rankine/Inverse Rankine 
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   (4.2.117) 

 

Figure 4.2.27 displays the 3D shape of the inverse Rankine model in the stress space. The shape is a right triangle 

in the deviatoric plane (  plane) as shown in Figure 4.2.28, and it can be defined as a linear function about the 

hydrostatic axis in the meridian plane. 
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6


    

1

2

3

Figure 4.2.27 Rankine failure 
surface shape in principal stress 
space 

Figure 4.2.28 Rankine failure 
surface shape in deviatoric plane 

(  plane) and meridian plane 
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The Modified UBCSAND model is developed to simulate liquefaction phenomenon using plastic theory based 

on effective stress. It is extended to enable implicit nonlinear analysis for 3D stress state based on the 

constitutive model9, 10 developed to simulate liquefaction phenomenon with explicit method for 2D stress state. 

Basically, in the elastic domain, it represents a nonlinear elastic behavior that elastic modulus changes with 

respect to pressure. A plastic behavior is determined by three yield functions of shear, compression and pressure 

off. In particular, the shear yield function is able to consider the effect of material densification for cyclic loading. 

The Modified UBCSAND model is implemented as the implicit backward Euler method to maximize 

convergence and efficiency and uses a consistent tangent stiffness matrix 

 

Nonlinear elasticity 

In elastic zone, it represents a nonlinear elastic properties that elastic modulus changes with respect to effective 

pressure ( 'p ). 

 

'
ne

e e t
G ref

ref

p p
G K p

p

 
  

 
 

   (4.2.118) 

e

GK  : Elastic shear modulus number 

refp  : Reference pressure 

ne  : Elastic shear modulus exponent 

tp  : Allowable tension pressure 

 

Here, the allowable tension pressure is calculated automatically based on the cohesion and maximum friction 

angle. Assuming that Poisson’s ratio doesn’t change according to the pressure and isotropic properties are 

maintained, the bulk modulus is determined as follows: 

 

 2 1

3(1 2 )

e eK G








    (4.2.119) 

 

Shear yield function 

The Modified UBCSAND model represents a plastic shear behavior using Mohr-Coulomb yield function. 

 

                                                                 
9 Beaty, M. and Byrne, PM., “An effective stress model for predicting liquefaction behaviour of sand,” In Geotechnical 

earthquake engineering and soil dynamics III, Americal Society of Civil Engineers, Geotechnical Special Publication 75(1), 

1998, pp. 766-777. 
10  Puebla, H., Byrne, PM., and Phillips, R., “Analysis of CANLEX liquefaction embankments: protype and centrifuge 

models,” Canadian Geotechnical Journal, 34, 1997, pp 641-657. 

2.15 
Modified UBCSAND 
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2 1

1
3 tan 0

3
s mc mf R J I c       (4.2.120) 

m  : Mobilized friction angle 

 

Here, 
mcR  which expresses the shape of   plane is as follows: 
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  (4.2.121) 

 

Shear flow rule 

The flow rule utilizes the following plastic potential based on the non-associated plastic flow rule11. Therefore, 

the non-associated matrix operation is performed in case of using the Modified UBCSAND model. 
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 (4.2.122) 

m  : Mobilized dilatancy angle 

 

The size of dilatancy angle changes with the similar form to the stress-dilatancy angle theory12 for the variation 

of mobilized friction angle 

 

sin sin sinm m cv       (4.2.123) 

cv  : Constant volume friction angle 

 

In other words, the plastic deformation describes shrinkage when mobilized friction angle is smaller than 

constant volume friction angle whereas it describes swelling when mobilized friction angle is larger than 

constant volume friction angle 

 

  

                                                                 
11 Menetrey, P. and Willam, KJ, “Triaxial failure criterion for concrete and its generalization,” ACI Structural Journal, 92:3, 

1995, pp. 11-18. 
12 Rowe, P.W., “Stress-dilatancy relation for static equilibrium of an assembly of particles in contact,” Proceedings of the 

Royal Society of London, Mathematical and Physical Scieces, Series A, 269, 1962. pp-500-557. 
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Hardening shear behavior 

The hardening rule for the variation of maximum plastic shear strain is represented by the variation of stress 

ratio. 

 

 

sin
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    (4.2.124) 

 

The hardening phenomenon is determined respectively for two shear yield functions. The primary yield surface 

is used when the present stress ratio is the maximum stress ratio of material. On the other hand, the secondary 

yield surface is activated when the present stress ratio is smaller than the maximum value of material. At this 

time, if the stress ration exceeds the previous maximum value, the primary yield surface is activated again. 

The secondary yield surface is introduced to simulate the increase of plastic stiffness for cyclic loading. 

Therefore, the plastic strain by secondary yield surface is smaller than by the primary yield surface. This 

phenomenon is called the densification of soil. On the other hand, if the load is unloading, the material maintains 

elastic state and the stress ratio decreases. 

The hardening rule of primary yield surface is expressed with the following equation: 
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  (4.2.125) 

p

GK  : Plastic shear modulus number 

refp  : Reference pressure 

np  : Plastic shear modulus exponent 
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Figure 4.2.29 Swelling/Shrinkage 
according to the direction of 
plastic strain 
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p  : Peak friction angle 

fR  : Failure ratio 

1 3,P P    : Min./Max. plastic strain of principal axis 

 

 
 

Considering the densification of soil due to cyclic loading, the hardening rule of secondary yield surface is as 

follows: 
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  (4.2.126) 

,2

p

GK  : Cyclic plastic shear modulus number 

n  : Number of half cycles 

densF  : Soil densification fitting factor 

 

As the mobilized friction angle for cyclic loading closes to the maximum mobilized friction angle, the plastic 

shear modulus decreases and finally it closes to the perfect plastic state. In this case, the ground is determined 

with liquefaction. In case of reaching liquefaction, some residual hardening stiffness can be given through 
postF . 

 

,

p p

G post G postK K F     (4.2.127) 

postF  : Post liquefaction fitting factor 
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Figure 4.2.30 Plastic shear 
hardening behavior 
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Cap yield function, flow rule and hardening behavior 

The cap yield function is same with that of Modified Mohr-Coulomb model (4.2.99). It uses the associated plastic 

flow rule and the hardening model can be expressed with the following equation in the form what the size of 

compression limit increases for the plastic volumetric strain. 
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p p

c B ref v

ref

p
p K p

p


 
   

 
 

   (4.2.128) 

p

BK  : Plastic bulk modulus number 

mp  : Plastic shear modulus exponent 

 

Pressure cut-off yield function and flow rule 

The pressure cut-off yield function can be considered additionally to add the condition what the effective 

pressure is always larger than specified value ( 'pr cutf p p  ). It uses the associated plastic flow rule and 

the pressure cut-off yield function does not have hardening behavior. 

 

 

The Sekiguchi-Ohta model is widely used in Japan and still improved since it is developed by Sekiguchi and 

Ohta13. There are Inviscid and Viscid type. The Inviscid type is plastic model without time dependency. Although 

it shares several characteristic with Cam-Clay14 model, there is a difference that the irreversible diliatancy15 is 

strictly described considering the K0 stress state of normally consolidation. However, it causes a numerical 

problem because the plastic flow value is only undetermined under the preconsolidation stress state. In FEA NX, 

it resolves numerical problem in the preconsolidation stress using the algorithms 16  which calculates the 

specificity vertex using the crossing of the two yield function. 

 

Nonlinear elastic 

Similarly to the Modified Cam-Clay model of FEA NX, it shows the nonlinear elastic characteristic what the 

elastic modulus changes with the effective stress ( p ) in the elastic range. 
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   (4.2.129) 

                                                                 
13  Sekiguchi, H. and Ohta, H., "Induced anisotropy and time dependency in clays", 9th ICSMFE, Tokyo, Constitutive 

equations of Soils, 1977, 229-238 
14 Roscoe, K. H., Schofield, A. N. and Thurairajah, A., "Yielding of Clays in States Wetter than Critical", Geotech., 1963, 

Vol. 13, No. 3, pp. 211-240 
15 Ohta, H., Sekiguchi, H., "Constitutive equations consdiering anisotropy and stress reorientation in clay", Proceedings of 

the 3rd International Conference on Numerical in Geomechanics., 1979, pp. 475-484 
16 Pipatpongsa, T., Iizula, A., Kobayashi, I., Ohta, H., "Fem formulation for analysis of soil constitutive model with a corner 

on the yield surface", Journal of Structural Engineering, Vol. 48, pp. 185-194 

2.16 
Sekiguchi-Ohta (Inviscid) 
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K  : Bulk modulus 

0e  : Initial void ratio 

  : Slope of overconsolidation line 

  : Poisson's ratio 

G  : Shear modulus 

 

Yield function 

The yield function of Sekiguchi-Ohta (Inviscid) model is as follows: 
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p
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   (4.2.130) 

M  : Slope of critical state line 

D  : Dilatancy modulus 

cp  : Preconsolidation pressure 

  : Generalized relative stress ratio 

 

The generalized relative stress ratio ( ) which is the value for the degree of volume expansion is expressed as 

follows: 
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   (4.2.131) 

ijs  : Stress deviator tensor 

cijs  : Preconsolidation stress deviator tensor of 0K  state 

 

In the above equation, it can be found that   is affected by the preconsolidation pressure and each component 

of stress deviator tensor. Through this, it describes strictly the dilatancy effect than Cam-Clay model which 

considers only the preconsolidation pressure and the present stress deviator tensor. 

 

The dilatancy modulus ( D ) has the relation with slope of critical state line ( M ), slope of normally 

consolidation line (  ), slope of overconsolidation line ( ) and initial void ratio as follows: 
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MD         (4.2.132) 

 

Here,  01 e    ,  01 e    . The dilatancy modulus ( D ) is calculated internally in FEA NX. 

 

Figure 4.2.31 displays the yield function in principal stress space. As described before, it can be found that the 

yield function of Sekiguchi-Ohta model has the specificity which causes a numerical problem in the 

preconsolidation stress. 

 

1

2

3

 
 

Hardening behavior 

The preconsolidation stress ( cp ) is used as a parameter of isotropic hardening and defined as follows: 

 

0
0 exp

p p

v v
c cp p

 

  

 
  

 
   (4.2.133) 

0cp  : Initial preconsolidation pressure 

p

v  : Plastic volumetric strain 

0

p

v  : Initial plastic volumetric strain 

Figure 4.2.31 Yield function in 
principal stress space 
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The Hoek-Brown failure criterion for rock masses is widely accepted and has been applied. While, in general, it 

has been found to be satisfactory, there are some uncertainties and inaccuracies that have made the criterion 

inconvenient to apply and to incorporate into numerical models. In particular, the difficulty of finding an 

acceptable equivalent friction angle and cohesive strength for a given rock mass has been a problem since the 

publication of the criterion in 1980. The Generalized Hoek-Brown model resolves all these issues and sets out a 

recommended sequence of calculations for applying the criterion. In order to link the empirical criterion to 

geological observations by means of one of the available rock mass classification schemes, the Rock Mass Rating 

is used17. 

 

Yield function 

The non-linear Generalized Hoek-Brown criterion for rock masses defines material strength in terms of major 

and minor principal stresses as: 
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   (4.2.134) 

ci  : Uniaxial compressive strength 

bm , s , a  : Parameter for defining rock mass failure  

 

Here, bm , s , a  can be expressed with the parameters related to the geological strength index(GSI) and the 

disturbance factor(D). 
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GSIa e e      (4.2.135) 

GSI : Geological strength index 

im  : Intact rock material property 

D : Disturbance factor (D=0 for undisturbed rock masses, D=1 for very disturbed rock masses) 

 

Flow rule 

If the flow rule is used same as the yield function of Generalized Hoek-Brown, the corner from hexagon should 

be handled. However, this difficulty is removed by using the flow rule of conical shape such as Drucker-Prager 

model. 

 

                                                                 
17 Hoek E., C. Carranza-Torres, and B. Corkum. 2002. Hoek-Brown criterion – 2002 edition. In Proceedings of the 5th North 

American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada: NARMS-TAC 2002, Toronto, 

Canada, eds. R.E. Hammah et al, Vol. 1, pp. 267-273. 

2.17 
Generalized Hoek-Brown 
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g S       (4.2.136) 
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  and   is dilatancy angle. 

 

Figure 4.2.32 shows the shape in stress space of the Generalized Hoek-Brown model. The tensile stress is the 

following equation. 
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      (4.2.137) 
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The Soft Soil model is suitable for simulation of normally consolidated or near normally consolidated clay soils. 

Although this model is replaced by the advanced constitute model that simulates the hardening behavior better 

or the Soft Soil Creep model that simulates the secondary consolidation, the Soft Soil model is better capable 

to model the compression behavior of very soft soils. The Soft Soil model uses the yield surface of Modified 

Mohr Coulomb model to resolve the convergence problem due to the discontinuity of yield function. The main 

features of this model are the stress-dependent nonlinear elastic behavior, the hardening behavior through pre-

consolidation stress and the failure by shear stress. 

 

Nonlinear elastic 

The Soft Soil model has the nonlinear elastic characteristic which has the logarithmically relationship between 

volumetric strain and mean effective pressure. This is the same stress-dependent stiffness with Modified Cam-

Clay. 

The bulk modulus K and the shear modulus G have the following relationship for the effective stress p . 

 

Figure 4.2.32 Hoek-Brown failure 
surface in the principal stress 
space 

2.18 
Soft Soil 
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   (4.2.138) 

0e  : Initial void ratio 

  : Slope of over-consolidation line 

  : Poisson's ratio 

 

If the tensile strength p is considered from the above equation, the bulk modulus can be expressed as follows: 

 

 
 01 e

K p p



      (4.2.139) 

 

By using the cohesion C and the friction angle , the tensile strength p can be calculated as follows: 

 

tan

C
p


      (4.2.140) 

 

Yield function and flow rule 

The Soft Soil model uses the yield function of Modified Mohr Coulomb model. The yield function and flow rule 

of Soft Soil model are same with the equation (4.2.99) and (4.2.103) respectively. For more details, please refer 

to the ‘2.10 Modified Mohr-Coulomb’. 

 

Hardening behavior 

Even though the Soft Soil model has each yield function of shear and compression, the hardening behavior 

occurs for the compression yield function. Same as the Modified Cam-Clay model, the compression hardening 

behavior is defined by the pre-consolidation stress which is the function of plastic strain. 
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    (4.2.141) 

0cp  : Initial pre-consolidation stress 

p

v  : Plastic volumetric strain 

0

p

v  : Initial plastic volumetric strain 

 



 

 

 Section 2. Plastic Material Properties | 193 

 

 

 

ANALYSIS REFERENCE Chapter 4. Materials 

The Hardening Soil with small strain stiffness model is a modification of the Modified Mohr-Coulomb model 

that considers the increased stiffness of soils at small strains. This behavior is described in this model using an 

additional strain-history parameter and two additional material parameters. 

As the sign convention for stresses and strains is displayed that compression is negative and tensile is positive, 

it assume that 1 2 3     for the principal stresses and 1 2 3     for the principal strains. For example, 

the relationship of 1 2 3     is established in case of triaxial tests. 

 

Nonlinear elastic 

In the Modified Mohr-Coulomb model, the following characteristics are used to the stress dependent value. 

 

1 1 3
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 (4.2.142) 

c  : Cohesion 

refp  : Reference stress for stiffnesses 

  : Friction angle 

m  : Power law for stress dependent stiffness 

50
ref

E  : Reference secant stiffness in standard drained triaxial test 

ref
oedE  : Reference tangent stiffness for primary oedometer loading 

ref
urE  : Reference unloading / reloading stiffness 

 

As the stiffness modulus can be changed according to the stress, this model shows the nonlinear elastic 

characteristic what the elastic modulus changes. 

 

Yield function, plastic potential function and flow rule 

T. Schanz, P.A. Vermeer and P.G. Bonnier18 have developed the Hardening Soil model based on the hyperbolic 

relationship between deviatoric stress and vertical strain in the triaxial test, and suggested the shear & 

compressive yield function as the following equation. 

 

                                                                 
18 Schanz T., Vermeer P.A., Bonnier P.G. (1999). The hardening-soil model: Formulation and verification. Beyond 2000 in 

Computational Geotechnics, Balkema, Rotterdam. pp. 281-290. 

2.19 
Hardening Soil with small 

strain stiffness 
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q  : Deviatoric stress 

aq , 
fq  : Asymptotic & ultimate deviatoric stress 

50E  : Confining stress dependent stiffness modulus for primary loading 

urE  : Young's modulus for unloading and reloading 

p  : Hardening parameter (plastic shear strain) 

fR  : Failure ratio 
fq / aq  

,s cf f  : Shear & compressive yield function 

cp  : Pre-consolidation stress 

 

If 0p

v  , the above shear yield function can be considered the strain relationship as the following equation. 
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 (4.2.144) 

 

The yield function of Modified Mohr-Coulomb model consists of the shear, compressive and tensile yield 

function as the following equation. 
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 (4.2.145) 

13f  : Shear yield function ( 1 2 3    ) 

cf  : Compressive yield function 
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tf  : Tensile yield function 

cp  : Pre-consolidation stress 

  : Cap parameter 

tp  : Tensile strength 

 

The maximum shear stress fq  is calculated by the Mohr-Coulomb criteria, and the Mohr-Coulomb model is 

used in case of  1 3fq    . 

  is an auxiliary model parameter which control the value of compressive yield function in p-q space. It is 

decided by considering the stress ratio in the normally consolidated state ( 0K nc ) and the friction angle. 

The plastic potential function uses the Mohr-Coulomb criteria for shear, and the yield function for compressive 

and tensile as the following equation. 
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   (4.2.146) 

13g  : Shear plastic potential function (in case of 1 2 3    ) 

cg  : Compressive plastic potential function 

tg  : Tensile plastic potential function 

m  : Mobilized dilatancy angle 

 

The mobilized dilatancy angle m  can be obtained from the following equation, and it is limited to satisfy the 

condition 0 m    considering physical behavior. 
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(4.2.147) 

m  : Mobilized friction angle 

cs  : Critical state friction angle 

  : Dilatancy angle 
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The mobilized friction angle and the critical state friction angle are consistent with the Rowe theory as described 

by T. Schanz, P.A. Vermeer and P.G. Bonnier. 

 

Hardening behavior 

The Modified Mohr-Coulomb model shows hardening behavior while increasing the effective plastic strain and 

it reaches the perfect plastic state in case of  1 3fq     as mentioned in the previous yield function. 

In the process of compressive hardening, the pre-consolidation stress
cp is defined as below: 
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  (4.2.148) 

ref
cp  : Reference pre-consolidation stress 

p
v  : Plastic volumetric strain 

 

Hardening Soil with small strain stiffness 

The Hardening Soil with small strain stiffness model is implemented by using the Modified Mohr-Coulomb 

model and Small strain overlay19 model, and needed two additional parameters as below: 

 

0
refG  : Initial or very small-strain shear modulus 

0.7  : Shear strain at which the shear modulus is about 70% of the initial small-strain shear modulus 

 

The strain range in which soils can be considered truly elastic is very small. With increasing strain range, soil 

stiffness decrease nonlinearly as the following graph. 

 

  

                                                                 
19 Benz, T. "Small strain stiffness of soil and its numerical consequences", PhD thesis, University Stuttgart, 2007. 
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To reflect the above characteristics, the Hardening Soil with small strain stiffness model uses the modified 

Hardin & Drnevich relationship20 as the following equation. 
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    (4.2.149) 

sG  : Shear modulus 

0G  : Initial shear modulus 

  : Shear strain 

0.7
 : Shear strain at which the shear modulus is about 70% of the small-strain shear modulus 

 

Once the direction of loading is reversed, the stiffness regains a maximum recoverable value which is in the 

order of the initial soil stiffness. Then, while loading in the reversed direction is continued, the stiffness 

decreases again. 

 

To reflect the above characteristics, the Hardening Soil with small strain stiffness model writes the history of 

strain in the internal model, and follows Masing’s rule as follows: 

                                                                 
20 B.O. Hardin, V.P. Drnevich, "Shear modulus and damping in soils: Design equations and curves", Journal of the Soil 

Mechanics and Foundations Division, 98(SM7):667-692, 1972. 

Figure 4.2.33 Characteristic 
stiffness-strain behavior of soil 
with the ranges for typical 
geotechnical structures and 
different tests 
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► The shear modulus in unloading is equal to the initial tangent modulus for the initial loading curve. 

► The shape of the unloading and reloading curves is equal to the initial loading curve, but twice its size. 

Masing’s rule can be fulfilled by using twice of the initial loading 0.7  for the reloading 0.7 . 

 

The initial shear modulus 0G  is calculated by the following equation. 
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And the hysteresis shear strain ( H ) is defined as the following equation. 
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    (4.2.151) 

H  : Strain hysteresis tensor (for more details, refer to Benz19) 

e  : Incremental shear strain 

 

In the numerical analysis, the following incremental equation is used with the tangential stiffness of modified 

Hardin & Drnevich relationship. 
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  (4.2.152) 

 

 

Soft clay in its natural state has a significant anisotropy in the interior soil particle fabric by deposition and 

consolidation21. Also as the strain is continuously generated, the degree of anisotropy is changed whereby the 

interior soil particles are rearranged and contact between the particles is changed. The Generalized SCLAY1S 

model of FEA NX is rooted in the SCLAY122 model which considered the change due to the initial stress induced 

anisopropy of the soft clay and anisotropy of rotational hardening. 

                                                                 
21  S.J. Wheeler, M. Cudny, H.P. Neher, C. Wlitafsky, "Some developments in constitutive modelling of soft clays", 

Proceedings of the International Workshop on Geotechnics of Soft Soils-Theory and Practice, Noordwijkerhoud, the 

Netherlands, 2003, pp. 17-19. 
22 S.J. Wheller, A. Naatanen, M. Karstunen, M. Lojander "An anisotropic elastoplastic model for soft clays", Canadian 

Geotechnical Journal, 40.2., 2003.,  pp. 403-418. 

2.20 
Generalized SCLAY1S 
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On the other hand, the structure of the soil particle is composed of two parts23: bonding as well as fabric. The 

fabric is composed of spatial arrangement of particles and inter-particle contact, and the bonding is weakened 

gradually as the plastic straining is caused by the forces acting between the particles. The phenomenon that the 

bonding is weakened gradually by the plastic straining is called destructuration, and SCLAY1S model considers 

the destructuration phenomenon of the SCLAY1 model additionally. 

The initial SCLAY1(S) model was the model assumed the triaxial stress state, and later it is improved by the 

model considering the general stress state. The Generalized SCLAY1S model is that the shape of yield function 

is complicated and needs more variables to represent the hardening behavior. However, It has a advantage that 

it can simulate the behavior of the general stress state strictly as well as the triaxial stress state. 

In the SCLAY1S model, ignoring the initial anisotropy and bonding, and in case of assuming a related material 

constant to 0, it can be found that the Modified Cam Caly model and the yield function are matched exactly. 

 

Nonlinear elastic 

The Generalized SCLAY1S model of FEA NX does the stress-dependent non-linear elastic behavior like Modified 

Cam Clay, Sekiguchi-Ohta, Soft-Soil models. This being so, the detailed description and formulas will be 

omitted. (Refer to the equation 4.2.139) 

 

Yield function and plastic potential function 

As the Generalized SCLAY1S model follows the associated flow rule, it is equal to the yield function and plastic 

potential function. 

The yield function of the SCLAY1 model simplified of the triaxial stress state is represented about the effective 

stress, and the signs of the stress is that compression is (+) and tensile is (-). 
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s s   (4.2.153) 

p  :  Pressure 

q  :  Shear stress 

cp  :  Preconsolidation pressure 

M  :  Slope of critical state line  

  :  Degree of anisotropy 

 

                                                                 
23 J.B. Burland, "On the compressibility and shear strength of natural clays", Geotechnique, 40.3, 1990, pp. 329-378. 
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Substituting 0 to the degree of anisotropy   and summarizing the equation in the equation (4.2.153), it can be 

found that the yield function of the Modified Cam Clay is equal to the equation (4.2.77). In other words, the 

SCLAY1 model is the generalized model considering the degree of anisotropy from the Modified Cam Clay 

model. 

 
 

The generalized yield function in the general stress state is represented as follows. 
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s α s α α α   (4.2.154) 

 

Here, the deviatoric fabric tensor dα  of the soil particle is represented by the fabric tensor 
α  in the same 

form of the deviatoric stress tensor. 
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d ij ij ij ij         (4.2.155) 

 

The fabric tensor 
α  has the following properties. 

 

1kk ij       (4.2.156) 

 

The degree of anisotropy   meaning the slope of the yield function in the simplified of the triaxial stress state 

is defined by the deviatoric fabric tensor dα  as follows. 
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Figure 4.2.34 Yield function of 
triaxial stress state 
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And preconsolidation stress cp  in the generalized SCLAY1S model considered bonding of the soil particle is 

represented as follows. 

 

 1c cip x p       (4.2.158) 

cip  : Preconsolidation pressure of the intrinsic yield function 

x  : Degree of bonding 

 

Here, the intrinsic yield function has the same stress in the same fabric, the void ratio, the slope and the limit 

state but is the conceptional yield function24 having smaller preconsolidation stress. The detailed description 

about the intrinsic yield function and the degree of bonding can be seen part of the hardening behavior. 

On the other hand, the Generalized SCLAY1S model of FEA NX is under the allowable tensile pressure to handle 

the convergence problem in case of occurring tensile to materials like Modified Cam Clay, Sekiguchi-Ohta 

models. 
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Isotropic hardening law 

The Generalized SCLAY1S model has three kinds of the hardening laws. Here, the isotropic hardening law is the 

hardening law which the general soft clay has, and it is equal to the law of the Modified Cam Clay, Sekiguchi-

Ohta models. The following is the equation representing the general isotropic hardening law. 

 

 1 c p
c v

e p
dp d

 


 


   (4.2.160) 

,c cp dp 
 : Preconsolidation pressure and the change rate of the preconsolidation pressure  

p
vd

 
: The change rate of the volumetric plastic strain 

  : The gradient of the normal consolidation line 

  : The gradient of the over-consolidation line 

e  : The void raio 

 

                                                                 
24 M. Karstunen, C. Wiltafsky, H. Krenn, F. Scharinger, H.F. Schweiger, "Modelling the behaviour of an embankment on 

soft clay with different constitutive models", International journal for numerical and analytical methods in geomechanics, 

30.10, 2006, pp. 953-982. 
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The isotropic hardening behavior of the Generalized SCLAY1S model is equal to the equation (4.2.160) but the 

using material constants are changed and the object of hardening turns to the preconsolidation stress of the 

intrinsic yield function. 

 

 1 ci p
ci v
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dp d

 


 


   (4.2.161) 

i  : The gradient of reconstituted soil(or intrinsic) normal consolidation line 

 

 
 

The reconstituted soil without bonding and the natural soil having the initial bonding follow the intrinsic 

compression line of the picture 4.2.35 and the general compression line respectively. The general compression 

line generates the yielding at the bigger effective pressure than the reconstituted soil, and converges to the 

compression line of reconstituted soil as the bonding decreases gradually. At this time, generally the gradient 

of the post-yield compression curve   has a lot bigger value than the gradient of the reconstituted soil line i , 

but is is due to the destructuration that the bonding of natural soil reduces gradually. 

 

Rotational hardening law 

The rotational hardening law simulates the behavior changing the degree of anisotropy as the plastic strain 

changes, but it causes the hardening so that the anisotropy disappears as the plastic strain increases. 

The rotational hardening law in the simplified of the triaxial stress state is represented as follows. 
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  (4.2.162) 

,d   :  Degree of anisotropy and the change rate of the degree of anisotropy 
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Figure 4.2.35 Compression line of 
natural and reconstituted soil 
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p
vd

 
: The change rate of volumetric plastic strain 

p
dd

 
: The change rate of shear plastic strain 

  : 
q

p
  , Ratio of the shear stress and pressure 

  : Coefficient of the absolute effectiveness of the rotational hardening law 


 : Coefficient of the relative effectiveness of the rotational hardening law 

 

Here,  and  are defined as follows. 
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   (4.2.163) 

 

In the equation (4.2.162), it can be found that the change rate of the degree of anisotropy   is growing 

together as the volumetric plastic strain and shear plastic strain grow. However, as the degree of anisotropy is 

closer to  3 4   or  1 3  , the contribution of the volumetric plastic strain or the shear plastic 

strain affecting to the change rate of the degree of anisotropy are reduced. 

On the other hand, numerical problems happen in the dry side likewise other material models following the limit 

state theory, Macaulay bracket  included in the equation (4.2.162) is to prevent the degree of anisotropy 

effusing when the yielding occurs in the dry side. 

The rotational hardening law of generalized model changes as follows. 
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α η α η α    (4.2.164) 

,d ddα α  : Deviatoric fabric tensor and the change rate of the deviatoric fabric tensor 

η  : 
p


s

η , The raio of deviatoric stress and pressure 

 

The equation (4.2.164) is similar to the equation (4.2.162), but hardening variables are changed from the scalar 

values to the secondary tensor values corresponding to the respective stress components. 

 

Destructuration law 

The third hardening law, destructuration law simulates that the degree of bonding decreases gradually as the 

plastic strain occurs. 
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      0 0
p pp p

v vd ddx a x d b x d ax d bd            (4.2.165) 

,x dx  : The degree of bonding and the change rate of the degree of bonding 

a  : Coefficient of the absolute effectiveness of the destructuraion law 

b  : Coefficient of the relative effectiveness of the destructuraion law 

 

Similar to the rotational hardening law, the change rate of the degree of bonding also grows as the volumetric 

plastic strain and the shear plastic strain grow. However it is irrelevant to the sign of the volumetric plastic strain 

and only affected by its magnitude. Also, it can be found that the change rate of the degree of bonding is 

reduced as the degree of bonding x  is closer to 0x  , because it simulates the weakened bonding 

phenomenon as the plastic strain increseas as a result. 

 

 

By the development of the tunnel excavation technology, it is possible to construct structures in deep geological 

environments and bedrock, and these structures under the high confining pressure can be occurred brittle 

fracture like spalling or slabbing by the excavation of the cavity. These failure phenomena can not be predicted 

properly with perfectly elastoplastic, strain softening, brittle models applying the traditional failure criteria. 

CWFS model predicted the swelling effects of bedrock and the failure behavior in deep geological environments 

more exactly than the brittle model, therefore this model is included in FEA NX. 

 

Shear yield function 

CWFS model taking advantage of the Mohr-Coulomb yield function is that the hardening/softening behavior of 

table is possible. Therefore shear plastic behavior is represented as follow equation. 

 

   2 1

1
3 tan 0

3
s mcf R J I c        (4.2.166) 

  : Friction angle 

c  : Cohesion 

  : Equivalent plastic strain 

 

Shear flow rule 

The flow rule uses the following plastic potential based on the non-associated plastic flow rule. Here, It uses the 

smoothing formula in order to avoid singularity occurred in the corner. For more information, refer to chapter 

modified UBCSAND. 

 

2.21 
CWFS (Cohesion 

Weakening and Frictional 

Strengthening) 
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 (4.2.167) 

  : Dilatancy angle 

 

Shear hardening behavior 

In order to define the shear hardening, the relation of the plastic multiplier   and the hardening variable   are 

defined as follows. 

 

 21
1 sin

3
       (4.2.168) 

 

FEA NX can define the hardening behavior about cohesion c , friction angle   and dilatancy angle   using 

the table. 

 

 

Geogrid is generally used as the material for reinforcing soil/ground. Geogrid is made of the polymer fabric, and 

it is working with the weight of soil/ground. It is only resisted the tension, and mainly used as a sub-material of 

reinforced earth retaining wall. 

 

Nonlinear elastic 

The geogrid material in FEA NX shows the tension-only behavior. The stress-strain relationship of geogrid is 

shown in the following figure. 

 

tension 



 
 

The 2D geogrid shows an independent behavior each other in the axial plane. 

 

2.22 
Geogrid 

Figure 4.2.36 Tension-only 
behavior of geogrid 
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   (4.2.169) 

 

Yield function 

The yield function and plastic potential function of geogrid material are same since it follows the associated flow 

rule. 

The plastic behavior of each direction is independently and the yield condition is as follows. 

 

( ) 0yieldf    σ    (4.2.170) 

 

The yield condition of 1-axis and 2-axis can be applied differently. 

 

  



 

 

 Section 2. Plastic Material Properties | 207 

 

 

 

ANALYSIS REFERENCE Chapter 4. Materials 

In FEA NX, the concrete smeared crack model is used to simulate the plain concrete. The concrete-smeared 

crack model assumes that the monotonic load is applied to concrete under low confining pressure. The low 

confining pressure corresponds to the stress less than 1/5 to 1/4 of the maximum compressive strength of 

concrete. For reinforced concrete, the embedded elements are used. In this case, effects such as bond slip from 

the interface of concrete and steel are considered through tension stiffening.25 

The concrete smeared crack model simulates the compression part of concrete using a typical isotropic elasto-

plastic model, and the tensile part of concrete is simulated using a smeared crack model. The smeared crack 

model is a method of simulating the crack by adjusting the stress and stiffness at the integration point, without 

reconfiguring the mesh. In the smeared crack model, the band-width obtained based on the size of the element 

is reflected in the crack behavior to avoid mesh dependencies (Bazant and Oh 1983). The square root of an area 

for a two-dimensional element and the cubic root of a volume for a three-dimensional element are the crack 

width of the element. For the higher order element, the half of the square root and the cubic root are the crack 

width. The tensile/compression uniaxial behavior of the concrete smeared crack model is shown in the figure 

below. 

 

 
  

                                                                 

25 H. D. Hibbit, "A simplified model for concrete at low confining pressure", Nuclear engineering and design, 

104.3, 1987, 313-320 





Unload/reload
response

Failure point
in compression

Cracking failure

Start of inelastic
behavior

2.23 
Concrete smeared 
crack 

Figure 4.2.37  
Uniaxial behavior of concrete 
smeared crack 
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Strain Decomposion 

The following strain decomposition is used in the concrete smeared crack model. 

 
el pl pl

c td d d d  ε ε ε ε                                                         (4.2.170) 

pl

cdε  : Incremental change of compressive plastic strain 

pl

tdε  : Incremental change of tensile plastic strain 

 

The above equation can be integrated as follows. 

 
el pl pl

c t  ε ε ε ε                                                              (4.2.171) 

 

Compressive behavior 

The concrete smeared crack model simulates compressive behavior using a typical elasto-plastic model. 

 

Compression plastic flow 

Associated flow ruls is used. 

 
2

01pl c
c c

c

p f
d d c



   
    
    

ε
σ

                                                  (4.2.172) 

 

0c  is the value which makes the ratio of 
11

pl
ε  of the monotonic biaxial test and 

11

pl
ε  of the monotonic uniaxial test 

to be constant. 

 

Compression yield surface 

 

03 3 0c cf q a p                                                       (4.2.173) 

p  : Effective stress (  
1

3
trace σ ) 

q  : Mises equivalent effective stress (
3

: , : deviatoric stress
2

S S S ) 

 

0a  is the value calculated from the ratio of the compressive strength in the uniaxial stress state to the 

compressive strength of the biaxial stress state. 

c  is the yield stress under the pure shear stress, calculated from the compression curve entered by the user. 
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                                                   (4.2.174) 

 

Tensile behavior 

Cracks occur when the stress is outside the crack detection surface, a type of yield function. If a crack occurs, 

the stress is returned using an implicit backward Euler method, and the direction of the maximum principal 

strain is the direction of the crack. This direction is stored to simulate the anisotropy by cracking in subsequent 

analyses. Since the orthogonal fixed crack model is used in the smeared crack model, the subsequent crack shall 

be in a direction orthogonal to the existing crack direction and up to three in the case of the three-dimensional 

model.  If the elastic strain in the direction of the crack is tensile after the crack has occurred, it is behaved as 

damaged elastic and it is considered that the crack is closed when it is compressed. 

 

 
 

Crack detection surface 

Crack detection surface is Coulomb line. 

 

0
0

ˆ ˆ3 2 0
3

t t
t tu u

t t

b
f q b p

 


 

   
        

   
                         (4.2.175) 

u

t  : Failure stress in uniaxial tension 

p̂ , q̂  : p  and q  for which open-crack related components are neglected.  

 

0b  is obtained by using the tensile strength value when the stress in one direction of the main stress is the 

compressive strength in a plane stress condition. 

  





Unload/reload
response

Failure point

Figure 4.2.38 
Tensile behavior of concrete 
semared crack 
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Tension flow rule 

As with compression, associated flow ruls is used. 

 

pl t
t t

f
d d





ε

σ
                                                           (4.2.176) 

 

Damaged elasticity 

The relationship between stress-elastic strain of concrete-smeared crack model is as follows: 

 

: elσ D ε                                                            (4.2.177) 

D  : Elastic Stiffness Matrix of Concrete Model 

In uncracked concrete, D  is a linear isotropic elastic matrix. If the elastic strain in the direction of the crack is 

tensile after the crack occurs, the stress and stiffness are behaved as damaged elasticity by reference to the 

tensile curve entered by the user. 

If   is the direction of the crack, the stress and elastic strain in that direction are 


  and el


 . If 0el


  , the 

component,  , of the concrete elastic stiffness matrix resulting from Poisson ratio is not considered. 

 

0 for ,  


     D                                                  (4.2.178) 

 

If the maximum value of the elastic strain produced in the   direction is open


 , and the stress at the 

corresponding elastic strain is open


 , the damaged components of the elastic stiffness matrix are as follows. 

 
open

open










D                                                  (4.2.179) 

 

The shear stiffness associated with the direction of the crack is calculated by the shear function entered by the 

user. 
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In reinforced concrete, the interaction between the reinforcement and the concrete is governed by secondary 

transverse and longitudinal cracks in the vicinity of the reinforcement. This behavior can be modeled with a 

bond-slip mechanism where the relative slip of the reinforcement and the concrete is described in a 

phenomenological sense.  

In FEA NX, the relationship between the normal traction and the normal relative displacement is assumed to 

be linear elastic, whereas the relationship between the shear traction and the slip is assumed as a nonlinear 

function. 

 

 
n n n

t t t

t k u

t f u

 

 
                                                            (4.2.180) 

 

Differentiating (4.2.180) results in expressions for the tangential stiffness coefficients. 
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                                                (4.2.181) 

 

FEA NX offers a predefined curve, ‘polynomial function’, for the relationships between shear traction and slip, 

and a user-defined multi-linear function is also available. 

 

Polynomial function 

The polynomial function describes the relationship between shear stress and slip as shown in the figure below, 

and the formula is shown below. 

 

 

2.24 
Bond Slip 

Figure 4.2.39 
Shear behavior of bond slip 
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The constitutive law for discrete cracking in FEA NX is based on a total deformation theory, which expresses 

the tractions as a function of the total relative displacements. The relationship between normal traction and 

crack width and the relationship between shear traction and slip are assumed as nonlinear functions. 

 

 

 

n n n

t t t

t f u

t f u

 

 
                                                          (4.2.183) 

 

In the above equation, the relationship between the normal traction and shear traction is independent to each 

other, so the stiffness can be expressed as follows. 
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                                                (4.2.184) 

 

In general, the normal traction is governed by a tension softening relation. For structural interface elements, 

FEA NX supports the following relations: 

 

1. Brittle cracking model 

2. Linear tension softening model 

3. Nonlinear tension softening model 

 

Brittle cracking model 

Brittle cracking model is characterized by the full reduction of the strength after the strength criterion has been 

reached. 
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2.25 
Discrete Cracking 
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Linear tension softening model 

In case of linear tension softening, the relation of the crack stress and displacement in the normal direction is 

given by the figure below. 
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                                  (4.2.186) 

 

 

 

 

 

 

 

 

Unloading and reloading can be modeled according to a secant approach or an elastic approach. In the secant 

approach, the relation between the traction and the relative normal displacement is linear up to the origin, after 

which the initial stiffness is recovered. In the elastic approach, the initial stiffness is recovered immediately after 

the relative normal displacement has become less than the current maximum relative normal displacement. 
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Figure 4.2.40 
Linear tension softening 
behavior 
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fG  : Mode-I fracture energy 

tf  : Tensile strength 
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Nonlinear tension softening model 

Hordijk , Cornelissen & Reinhardt  proposed an expression for the softening behavior of concrete as shown in 

the figure below  
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                (4.2.187) 

 

,n ultu  
: 5.136

I

f

t

G

f
  

1c  : 3  

2c  : 6.93  

 

Unloading and reloading can be modeled according to a secant approach, an elastic approach or by application 

of hysteresis. 
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Figure 4.2.41 
Linear tension softening 
behavior 
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Shear Retention 

In general, the shear traction is reduced after cracking according to the following equation.  

 

0

0

t t t t

t

t t n t

k u if u u
t

k u if u u

   
 

   
                                         (4.2.188) 

 

tk  : Reduced shear stiffness 

0tu  : Initial shear slip 

 
 

In general,   may vary between 0.1 and 0.3. If the crack surface is assumed to be smooth after Mode-I 

cracking,   is defined as zero. But generally, it is assumed that the crack surface is not smooth and hence 

0 1  . 
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The Masonry material model is a material model that simulates the behavior of the Masonry wall under lateral 

load using homogenization techniques. First, homogenize the brick and the head joint, and then homogenize 

the homogenized material and the bed joint to obtain the physical properties of the entire homogenized 

material. In the masonry material, tensile cracking is considered to be the only nonlinearity. Cracks can occur on 

both bricks and on two joints. In the event of a crack, the elastic modulus of the crack is reduced by a 

predetermined proportion. Then, the newly homogenized material is obtained by reflecting the reduced elastic 

modulus. 

 

The assumptions applicable to the Masonry Model are as follows. 

1. Brick has linear elastic behavior and brittle failure occurs. 

2. Mortar behaves linear elastically. 

3. Brick and mortar are perfectly bonded. 

4. Head joints are continuous. 

 

Figure 4.2.42 shows a coordinate system of the Masonry Model for homogenizationi, where indexes b, hj, and 

bj represent bricks, head joints, and bed joints, respectively. 

 

 
 

The stress/strain relationship of the homogenized masonry material is represented by 

 

ε Cσ                                                               (4.2.189) 

 

Where C  is the compliance matrix for the homogenized Masonry model and is obtained by nine independent 

modulus of elasticity as shown below. 
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2.26 
Masonry 

Figure 4.2.42 
Coordinate system of 
masonry model 
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C                                     (4.2.190) 

 

Structural matrix A  is used to obtain the stress of each brick and joint from the average stress of the Masonry 
model. 
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Homogenization of brick and head joints 

Calculate the ratio of the length of the brick and head joint. 
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Calculate the coefficients needed to obtain the physical properties. 
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Calculate Poisson’s ratio and modulus of elasticity. 
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Calculate the shear modulus. 
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Homogenization with bed joints 

Calculate the ratio of the length of the brick and bed joint. 
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Calculate the coefficients needed to obtain the physical properties. 
 

 

 

2

2

2

ˆˆ

ˆ ˆ1 1

ˆˆ

ˆ ˆ1 1

ˆ ˆ

ˆ ˆ1 1

ˆ ˆ ˆ ˆ

,  

ˆ ˆ,  ,  
ˆ ˆ1 1

ˆ ˆ ˆ ˆˆ ˆ,  
ˆ ˆ1

bj

xz zx

bj bj z

bj xz zx

bj bj bj z xz

bj xz zx

zy zx xybj bj

bj bj

bj xz z

bj

x

xy zy xz

bj bj bj

xz zx

t tE

v v v

t E tE

v v v

t v E tE v

v v v

t v v vt v

v v v

t v v v

v v







    

     

 
 

 
 

 
 


  

 


   





                               (4.2.197) 

 



 

 

220 | Chapter 1. 개요 

 

220 | Section 2. Plastic Material Properties 

 

 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

Calculate Poisson’s ratio and modulus of elasticity. 
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Calculate the shear modulus. 
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Stress of bead joint, head joint, and brick 

Structural matrix A , which provides stress of individual components from the average stress of the masonry, 

is as follows. 
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The coefficients of the structure matrix bj
A  for the bed joints are as follows: 
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1 bjv
 

 

The head joints and bricks are obtained by multiplying the common structural matrix Â  by the partial 

structural matrix ,b hjP P . 
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The coefficients for the common structural matrix are as follows: 
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Ĉ  : 
1

ˆ ˆ1 xz zxv v
 

 
The coefficients for the partial structural matrix are as follows: 
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In the above expression, index i is a head joint (hj) or brick (b). 
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Combined-Cracking-Shear-Crushing (CCSC) model in FEA NX is based on the formula presented by Lourenco26 

and enhanced by Van Zijl 27 . It is based on multi-surface plasticity, comprising a Coulomb friction model 

combined with a tension cut-off and an elliptical compression cap. Softening acts in all three modes and is 

preceded by hardening in the case of the cap mode. 

 

 
 

The interface model is derived in terms of the generalized stress and strain vectors.  

 

,
n

t t

u   
    
   

σ ε
t u

                                                     (4.2.205) 

 

n s tdiag k k k   D                                                  (4.2.206) 

 

, nu  : Stress and relative displacement in the normal direction  

,t tt u  : Stress and relative displacement in the tangential directioin 

nk  : Stiffness in the normal direction 

,s tk k  : Stiffness in the tangential direction  

 

Shear slip failure 

A Coulomb friction model describes the shear-slipping in the CCSC model and adhesion and internal friction 

angle assume softening behavior. 

 

                                                                 
26 P. B. Lourenço, “Compulational strategies for masonry structures”, Delft University Press, 

1996 
27 G.P.A.G. van Zijl, “Compulational modelling of masonry creep and shrinkage”, The 

Netherlands by Meinema BV, Delft, 1999 

2.27 
Combined  
Cracking-Shearing-
Crushing 

Figure 4.2.43 
Three yield surfaces in two 
dimension 
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  : Internal friction angle 

0, r   : Initial friction ( tan ) and residual friction 

0c  : Initial adhesion 

  : Plastic relative displacement 

II

fG
 

: Mode-II fracture energy 

 

From the observations of experiments27, shear failure energy and normal stress assume the following linear 

relationships.  

0
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                                 (4.2.208) 

 

,a b  : Material constants 

 

Tension cut-off 

Tensile failure and softening behavior are defined as follows, and plastic flow functions are defined using the 

associated plastic flow rule. 
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                                                           (4.2.209) 

t  : Tensile plastic strain 

tf  : Tension force 

I

fG
 

: Mode-I fracture energy 

 

Compression cap 

The yield function of the compression cap is defined as follows, and the function of compressive plastic flow is 

defined using the associative plastic flow rule.  
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c  : Compressive plastic strain 

c  : Compression force 

sC
 : Shear stress contribution parameter 

cf  : Compression failure energy 

p  : Plastic strain at peak 

 

Compression force is expressed by the initial hardening behavior and softening behavior defined by 

compression failure energy.  

 

 

 

 
 

Therefore, the compression force is defined in three areas as follows: 

Figure 4.2.44 
Hardening and softening 
behavior for compression 
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Drained/Undrained Materials 

The pore pressure in stress analysis can be divided into the steady state pore pressure, which does not change 

with time, and the unsteady pore pressure, which changes with time or changes in load/boundary states, for 

convenience. 

 

steady unsteadyp p p      (4.3.1) 

 

Here, the state where the unsteady pore pressure is close to '0' is called the drained condition and the analysis 

under this condition is called drained analysis. Generally, it is appropriate to perform drained analysis for the 

following states. 

 

► When the change in steady state pore pressure is insignificant, due to external boundary conditions or use of 

sand like materials which have large coefficients of permeability  

► When simulating the process after consolidation, where the excessive pore pressure has been dissipated 

 

Pore water can display instantaneous undrained behavior, due to the use of clay like materials with small 

coefficients of permeability or external conditions such as the existence of impermeable layers. In this case, un-

negligible unsteady pore pressure occurs for the change in external load state. This unsteady state pore pressure 

is called the excessive pore pressure. When the pore pressure is assumed not to change with the seepage 

condition time, it is determined by the permeability coefficient and the volume change of the porous ground 

due to the compressibility of the pore water. FEA NX uses this process of dissipating excessive pore pressure, 

caused by load state change, with time to simulate consolidation analysis. 

 

The state where excessive pore pressure occurs due to the compressibility of the pore water is called the 

undrained condition, and the analysis under this condition is called undrained analysis. The general undrained 

conditions are as follows. 

 

► When the permeability coefficient is small, or the load change is very large  

► When instantaneous behavior and safety due to load change is of interest 

 

Drained conditions do not have stiffness for change in load condition. Hence, drained materials follow the 

behavior of the ground skeleton material. 

On the other hand, undrained material models consider the stiffness for the compressibility of the pore water in 

addition to the ground skeleton material behavior. Pore water does not have shear stiffness and has volume 

change stiffness. The relationship between the excessive pore pressure change and volume change of the 

ground is as follows. 

Section 3 

3.1 
Isotropic Materials  

3.2 
Undrained Constitutive 

Equation  
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T mechw
unsteady excess

K
dp dp d

n
   m ε    (4.3.2) 

wK  : Bulk modulus of water 

n  : Porosity 

m

 
: Normal unit vector (in 3D, [1,1,1,0,0,0]Tm ) 

mechdε  : Amount of mechanical strain change 

 

Assuming saturated linear elastic istropic materials for convenience, the modified strain-stress relationship can 

be obtained. 

 
,' el u mech

excessd d dp d  σ σ m C ε     (4.3.3) 

,el u el TwK

n
 C C mm

 
: Undrained elasticity matrix 

el
C  : Effective elasticity matrix 

 

The bulk modulus of water (
wK ) is generally a very large value and so, the undrained Poisson’s ratio 

u  is close 

to 0.5 and the porous material displays nearly incompressible behavior. When partial low order elements are 

used in this case, volumetric locking occurs and the accuracy of the solution falls greatly. Hence, modeling using 

high order elements is recommended for undrained analysis. 

 

To account for undrained effects and guarantee the solution accuracy, FEA NX does not use the bulk modulus 

of water directly and uses the user input undrained Poisson's ratio or Skempton factor ( B ) as a base to back-

calculate the bulk modulus of water directly. The undrained Poisson's ratio has a default value of  '0.495'.  

 

Using equation (4.3.3), the equation for calculating the bulk modulus of pore water is as follows, when the 

undrained Poisson's ratio or Skempton factor is given. 

 

 
   

' '

1 2 ' 1 ' 1 2

uw
f

u

EK
K

n

 

  


 

  
   (4.3.4) 

fK
 : Bulk modulus of pore water 

', 'E   : Effective modulus of elasticity and effective Poisson's ratio 

 

The Skempton factor ( B ) is defined as the ratio between the undrained bulk modulus and bulk modulus of pore 

water. In other words,  
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f uK BK     (4.3.5) 

uK  : Undrained bulk modulus 

 

Using equations (4.3.2) and (4.3.4), the relationship between the undrained Poisson's ratio and Skempton factor 

can be expressed as follows. 

 

3 ' (1 2 ')

3 (1 2 ')
u

B

B

 




 


 
    (4.3.6) 

 

Using this, the bulk modulus of pore water can be calculated. From equation (4.3.6), it can be seen that the 

undrained Poisson's ratio approaches '0.5' as the Skempton factor approaches '1'. 

 

Effective stiffness/effective strength 

This is the most general case where the input stiffness parameters and strength parameters are the parameters 

of the ground skeleton. Like drained analysis, FEA NX uses the input stiffness/strength parameters for undrained 

analysis. The disadvantage is that the effective strength parameters in the undrained state are hard to obtain 

through experimentation. 

 

► Available material model 

: Linear elastic material, Mohr-Coulomb, Drucker-Prager, Duncan-Chang, Hoek-Brown, Strain Softening, 

Modified Cam-clay, Jardine, D-min, Modified Mohr-Coulomb, User-supplied, Modified UBCSAND, Sekiguchi-

Ohta 

 

Effective stiffness/undrained strength 

The undrained load path of simple material models like the Mohr-Coulomb model is known to be difficult to 

express accurately. Hence, the undrained shear stiffness, which is determined by the friction angle and cohesion, 

can be overestimated. If the empirical undrained shear stiffness (
us ) is known, the undrined strength can be 

directly input using the cohesion when the friction angle is 0. By using the actual undrained strength, results that 

satisfy the shear stiffness can be obtained. However, this case has the same disadvantage that the undrained 

load path is difficult to estimate accurately. 

 

► Available material model 

: Mohr-Coulomb, Drucker-Prager, Modified Mohr-Coulomb 

 

Undrained stiffness/undrained strength 

This method directly inputs the undrained stiffness, which considers the compressibility of the pore water. 

Hence, FEA NX does not calculate the excessive pore pressure and its effects are included in the calculated stress. 

In other words, the calculated stress is the total stress that includes the pore pressure. The undrained stiffness 

and undrained strength parameters can be directly input when known by lab testing. 

3.3 
Undrained Material Type  
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► Available material model: Linear elastic material, Mohr-Coulomb, Drucker-Prager, Modified Mohr-Coulomb 
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Seepage Material Properties 

Darcy's Law is used to display the seepage phenomena within the ground. 

 

1
g w

w

h p


     q k kn k     (4.4.1) 

q  : Seepage velocity 

k  : Permeability coefficient matrix 

h  : Total head 

gn
 : Gravitational direction unit vector 

 

Darcy's Law expresses the proportionality between the ground seepage velocity and the total head gradient. 

Darcy's Law was originally derived for saturated soils, but various researches have shown that it can be applied 

to unsaturated flow. Also, Darcy's Law is effective for slow viscous flow and can be applied to most groundwater 

flow. 

 

For seepage materials, FEA NX uses the permeability coefficient matrix that considers only the diagonal 

component of each direction. Here, the direction is the MCS direction. 
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k     (4.4.2) 

 

The seepage velocity q  has velocity units, and the actual flow velocity in the soil has a value of the seepage 

velocity q divided by the porosity of the soil. 

 

n


q
v      (4.4.3) 

 

The permeability coefficient is a criterion for how much the groundwater within the soil moves in unit time and 

it is dependent on the water content and void ratio change e of the ground. The permeability coefficient has 

the largest value at the saturated state because the path size increases with larger water content. Also, because 

water content is dependent on pore pressure, the permeability coefficient also changes with pore pressure. The 

void ratio change is considered in consolidation analysis and fully coupled stress-seepage analysis. The void ratio 

change is calculated from the initial condition of the void ratio. 

 

Section 4 

4.1 
Constitutive Equation  

4.2 
Permeability Coefficient  
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To express the change in permeability coefficient with pore pressure and void ratio change, FEA NX uses the 

saturated permeability coefficient
satk , permeability ratio function ( )r rk k p  depending on pore pressure 

change. The 
kc  that defines the permeability ratio depending on the void ratio change e . The unsaturated 

permeability coefficient can be found using the following equation. 

 

10 ( )k

e

c
r satk p



k k     (4.4.4) 

 

 
 

The permeability coefficient with the pore pressure is directly input as a table in FEA NX, but widely known 

permeability coefficient formulas can be used. The supported formulas in FEA NX are as follows and the h  

represents the negative pore pressure head. 

 

Gardner function 
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     (4.4.5) 

a , n  : Curve fitting parameters 

 

Frontal function 
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Figure 4.4.1 Permeability ratio for 
negative pore pressure 
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r  : Minimum permeability ratio 

0H  : Limit negative pore pressure head 

 

Van Genuchten function 
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   (4.4.7) 

a , n , m  : Curve fitting parameters 

 

When water flows within the ground, a certain amount is retained and this amount is determined by the ground 

properties and capillary suction. This is called the water content. Seepage analysis generally uses the volumetric 

water content, the ratio between the total volume and water volume. 

 

wV
nS

V
       (4.4.8) 

  : Volumetric water content 

wV  : Water volume 

V  : Total volume 

n  : Porosity 

S  : Degree of saturation 

 

The change in volumetric water content for pore pressure is used for element calculation for seepage and 

consolidation analysis, as explained in chapter 3. Differentiating equation (4.4.8) for pore pressure can express 

it using the porosity and degree of saturation. 

 

n S
S n

p p p

  
 

  
    (4.4.9) 

 

The first term of the right hand side represents the slope of the volumetric water content for the saturated 

condition. This term is represented using the specific storage
sS , which represents the volumetric ratio of the 

water inflow or outflow in the ground due to the pore pressure head change. 

 

v sV Sn h
S

p h p 

 
 

  
    (4.4.10) 

vV  : Void volume 

 

4.3 
Volumetric Water 

Content  
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The second term of the right hand side represents the slope of the volumetric water content for the unsaturated 

condition. This value uses the slope of the user input soil-water characteristic curve. The soil-water characteristic 

curve represents the relationship between the volumetric water content and pore pressure for unsaturated 

conditions. The general curve is shown in Figure 4.4.2. 

 

 
 

Like the permeability coefficient, the volumetric water content is directly input as a table. Widely known 

formulas can also be used. The supported formulas in are as follows. p  represents the negative pore pressure 

head.  

 

Van Genuchten fuction 
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s r
r m
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    (4.4.11) 

r  : Minimum volumetric water content 

s  : Maximum volumetric water content 

a , n , m  : Curve fitting parameters 

 

The permeability coefficient and volumetric water content above were defined individually for pore pressure or 

pore pressure head. However, nonlinear characteristics (permeability coefficient and volumetric water content) 

of actual soils are affected by the pressure head change simultaneously in a coupled form. 

 

FEA NX reflects these characteristics and uses ductile function forms (pressure head-water content, water 

content-permeability ratio function or pressure head-degree of saturation, degree of saturation-permeability 

ratio function) to define the characteristics of unsaturated materials. When the pressure head-degree of 
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Negative Pore-Water Pressure0

Figure 4.4.2 Soil-water 
characteristic curve 

4.4 
Ductile Function 
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saturation and degree of saturation-permeability ratio ductile function are defined, the volumetric water 

content is calculated using the porosity. 
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Viscous Material Properties 

The typical behavior of visco-elastic and visco-plastic material is appeared to creep (increasing strain at constant 

stress) and stress relaxation (decreasing stress at constant strain) phenomenon. Also, viscous can be changed 

depending on the material temperature and strain rate. The visco-elastic property means that having both 

viscosity and elasticity. Similarly, the visco-plastic property means that having both viscosity and plasticity. FEA 

NX includes age independent and age dependent model for visco-elastic material, and Soft Soil Creep, 

Sekiguchi-Ohta(viscid) model for visco-plastic material. 

 

Material type 

Element type 

T
ru

ss
 

B
e

a
m

 

In
te

rf
a

ce
 

G
e

o
gr

id
 

P
la

n
e

 S
tr

e
ss

 

S
h

e
ll 

P
la

n
e

 s
tr

a
in

 

A
xi

sy
m

m
e

tr
ic

 S
o

lid
 

S
o

lid
 

Age independent ∨    ∨ ∨ ∨ ∨ ∨ 

Age dependent ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

Soft Soil Creep       ∨ ∨ ∨ 

Sekiguchi-Ohta 

(Viscid) 
      ∨ ∨ ∨ 

 

At the macroscopic level, the creep phenomenon is best observed in the uniaxial creep test under constant load 

and the relaxation test under constant strain at constant temperature. A specimen subjected to a constant 

uniaxial tension exhibits three distinct phases in the time frame: primary creep stage, secondary creep stage and 

the tertiary creep stage to rupture as shown in Figure 4.5.1. In the first stage of so-called primary creep, we 

observe a decreasing strain rate. In the second stage of so-called secondary creep, the creep strain rate is 

approximately constant. In the third stage of tertiary creep, the creep strain tare increases. The tertiary creep, 

similar to necking in plasticity, is considered as a localized instability phenomenon, which is beyond the scope 

of this creep analysis. The primary and secondary creep behavior can be used for isotropic material in FEA NX. 

 

  

Section 5 

Table 4.5.1 Available viscous 
materials for each element type 

5.1 
Age Independent Visco-

elastic Material 
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If the specimen is unloaded after some creep deformation, the elastic strain is immediately recovered and a 

portion of the creep strain is gradually recovered as shown in Figure 4.5.2. The recoverable portion of the creep 

deformation is called primary creep and the non-recoverable portion is called secondary creep. 

 

 
 

The Kelvin-Maxwell model is employed in the formulation of the creep capability as a generalization of the age 

independent visco-elastic material behavior. This model consists of one elastic spring and two viscous dampers. 

The Kelvin-Voigt model, which is a spring and a damper connected in parallel, represents the primary creep and 

a damper connected in series to the Kelvin-Voigt model represents the secondary creep. 

 

  

t



·

Primary Secondary Tertiary

Rupture

t



Primary
recovery

Elastic
recovery

Secondary 
not recoverable

Load
removed

Figure 4.5.1 Uniaxial creep test 
under constant load at constant 
temperature 

Figure 4.5.2 Creep strain 
relaxation upon load removal 
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The creep strain and time-dependent increase in creep strain under constant stress is given as 

 

 
1

p p

c c

total primary

s

k c tc

primary

p

t
c

e
k


 






 

  
  

    (4.5.1) 

 

The creep strain can be calculated with two empirical laws as follows: 
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  (4.5.2) 

, , , , ,a b c d e f  : Material constants 

t  : Time 

 

In empirical law1,
( )

pk
A




 ,

( ) ( )
pc

A R



 
 ,

( )
sc

K




  and pk , pc ,

sc  are calculated by the primary and 

secondary differential equations for c

total  in empirical law2. 

 

The equilibrium equation of Kelvin-Maxwell creep model in the uniaxial condition is as follows: 
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Figure 4.5.3 Kelvin-Maxwell creep 
model 
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Substitution of the increase in creep strain using central difference method into equation (4.5.3) gives the 

following equation: 

 

2
2

t

 
    

 
C k e Ce s     (4.5.4) 

 

The stiffness of the primary, secondary creep elements and equivalent creep stiffness in Kelvin-Maxwell creep 

model can be determined by 
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   (4.5.5) 

 

Using equation (4.5.4) and (4.5.5), the pseudo incremental strain ( ' ) which represent the stress relaxation is 

as follows: 
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  (4.5.6) 

 

In multi-axial creep deformation, a unique set of rheological parameters ( pk , pc ,
sc ) based on the effective 

stress is used and the pseudo incremental strain may be expressed with the following equation: 
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Δε' ε ε ε

   (4.5.7) 

 

With the total strain increment which is the summation of elastic and creep strain increment, the stress-strain 

relationship gives the following equation: 

 

e c e c           σ D D ε ε     (4.5.8) 

e
D  : Material matrices for elasticity 

c
D  : Material tangent matrices for creep 

 

Since the summation of elastic and creep strain increment should be equal to the exception of the pseudo 

incremental strain from the total strain increment, the stress-strain relationship is as follows: 
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'e     σ D ε ε      (4.5.9) 

 

For isotropic material, the elastic-creep tangent matrix ec
D  may be conveniently obtained by 
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  (4.5.10) 

K  : Bulk modulus 

G  : Shear modulus 

 

The properties of material such as concrete are changed with time and non-mechanical deformation of creep 

and shrinkage occurs. Also, the deformation with time varies depending on the time of the stress occurred in 

creep deformation. 

 

When a uniaxial stress exerts on a concrete specimen at the age  , creep deformation with time can be 

expressed as creep compliance (total strain at the age t ), specific creep (creep function excluding elastic 

deformation) and creep coefficient (ratio of creep strain to elastic strain). Various creep functions can be used 

depending on the time of the specific stress applied. If the stress changes with time, the increased/decreased 

stress at each time requires an independent creep function. Creep strain at a particular time is calculated 

through superposition of individually calculated strains due to the stresses increased/decreased from the time 

that stress starts changing. In order to use the superposition method, the histories of all the element stresses 

are saved, and the creep strains are calculated from the initial steps to the present for all the stresses at every 

step. Extensive data storage and calculations are thus required to use the superposition method. However, FEA 

NX does not save the entire histories of stresses, rather uses the following integration method to increase the 

calculation efficiency. 

 

The total creep deformation from a particular time to a final time can be expressed as a superposition integration 

of creeps due to the stresses resulting from each stage. 

5.2 
Age Dependent Visco-

elastic Material 
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    (4.5.11) 

( )c t  : Creep strain at time t  

( , )C t   : Specific creep 

  : Time at which the load is applied 

 

If we assume from the above expression that the stress at each stage is constant, the total creep strain can be 

expressed as a sum of the strains at each stage. 
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      (4.5.12) 

 

Using the equation (4.5.12), the incremental creep strain between the times 
1n nt t   can be expressed as 

follows: 
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          (4.5.13) 

 

If the specific creep is expressed by the degenerate kernel(Dirichlet functional summation), the incremental 

creep strain can be calculated without having to save the entire stress history. 
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        (4.5.14) 

( )a t  : Coefficients related to the initial shapes of specific creep curves at the time of loading   

  : Values related to the shapes of specific creep curves over a period of time 

 

In FEA NX, you can use the Aging-Kelvin creep model using the five   and the Aging-Viscous creep model 

which excludes spring from the Aging-Kelvin creep model. 
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Figure 4.5.4 Aging-Kelvin creep 
model 
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By introducing the specific creep formula, the incremental strain can be expressed as follows: 
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  (4.5.15) 

1n

c
  : Creep strain of previous stage 

E  : Elastic modulus 

 

From the above expression, it can be rearranged using  
5
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   and  
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    to 

give the following equation: 

 
"( )E          (4.5.16) 

 

Finally, including the shrinkage strain, it can be expressed as follows: 

 
"( )shE           (4.5.17) 

 

The Soft Soil Creep model simulates the creep behavior expanded to three-dimensional based on one-

dimensional creep theory28,29,30. 
 

Unlike the primary consolidation by the dissipation of excessive pore pressure, the secondary consolidation is a 

phenomenon caused by changes in the clay structure skeleton. It has the time dependency behavior what the 

compression is occurring continuously over time. Therefore, the Soft Soil Creep model is suitable for 

representing the creep behavior with time dependency 

 

  

                                                                 
28 Buisman, K., Results from long duration settlement tests., Proc. 1st International Conference on Soil Mechanics and 

Foundation Engineering, Cambridge, 1936, Vol. 1, p. 103-107. 
29 Bjerrum, L., Engineering geology of Norwegian normallyconsolidated marine clays as related to settlements of buildings 

(Seventh Rankine Lecture) Geotechnique, 1967, Vol. 17, p. 83-118. 
30 Garlanger, J.E., The consolidation of soils exhibiting creep under constant effective stress. Geotechnique, 1972, Vol. 22, 

p. 71-78. 

5.3 
Soft Soil Creep 
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Characteristics 

The Soft Soil Creep model is to simulate the time-dependent secondary consolidation (creep behavior), the 

stress-dependent stiffness and the failure behavior according to the Mohr-Coulomb criterion. 

 

1D creep model and 3D extended model 

The 1D creep strain is expressed as the following equation what the total strain rate is the sum of an elastic strain 
e  and a time-dependent creep strain c . The creep strain can be considered to a time-dependent creep strain, 

i.e., a visco-plastic strain. 
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   (4.5.18) 

e  : Elastic strain rate 

c  : Creep strain rate 

  : Swelling index 

  : Compression index 

0e  : Initial void ratio 

  : Creep index 

  : Reference time, precisely one day31 

                                                                 
31 Vermeer, P. A., & Neher, H. P., A soft soil model that accounts for creep, Proceedings of the international symposium 

'Beyond 2000 in Computational Geotechnics', 1999, Amsterdam, p.249–261. 

 log time

strain

SecondaryPrimary

Figure 4.5.5 Primary and 
secondary consolidation curve 
with time 
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p  : Pre-consolidation stress 

 

From the above equation of 1D creep behavior, the total strain rate of 3D extended Soft Soil Creep model can 

be expressed as follows: 
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ε ε ε D σ
σ    (4.5.19) 

D  : Elasticity matrix 

eqp  : Equivalent pressure 

pp  : Pre-consolidation pressure 

 

From the above equation (4.5.19), the volumetric creep strain c

v  can be expressed with the following equation: 
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    (4.5.20) 

 

If the equation (4.5.20) is integrated over time t  for constant eqp , the volumetric creep strain increment is 

given as 
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   (4.5.21) 

 

Equivalent pressure and yield function 

Using the well-known stress invariants for isotropic stress p  and deviatoric stress q  , the equivalent pressure 

eqp  in Soft Soil Creep model can be defined as follows: 

 

 
2 2eqp p p q       (4.5.22) 

  : Cap parameter in Modified Mohr-Coulomb model 

 

  is constant which defined by input parameter or ground material. 
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The Soft Soil Creep model has the Modified Mohr-Coulomb model criterion without strain hardening to prevent 

excessive deviatoric stress. Therefore, the total strain rate (4.5.19) additionally includes the plastic strain rate by 

shear failure as follows: 
e p c          (4.5.23) 

 
6sin

3 sin

p g

g q p p

 











   


   (4.5.24) 

g  : Plastic potential function 

  : Dilatancy angle 

 

The plastic strain rate follows the flow rule of Modified Mohr-Coulomb model and for fine grained, cohesive soils, 

the dilatancy angle tends to be small, it may often be assumed that dilatancy angle is equal to zero. 

 

 
 

The Viscid type of Sekiguchi-Ohta model follows the nonstationary flow surface theory32 among various visco-

plastic theories for simulating creep behavior of ground. The nonstationary flow surface theory model is 

basically based on the plastic model, but there is a difference that it contains the time dependent function. 

The Viscid type follows the assumption33  that the creep is in progress with a constant stress state in initial state 

ground before loading. 

Like Inviscid type, it resolves a numerical problem using the specificity algorithms of Inviscid type since it 

contains a stress state that the plastic flow is only undetermined in the yield function. However, except the 

specificity problem, convergence problem occurs when the stress state locates dry side due to the model 

characteristics. In FEA NX, it resolves convergence problem by correcting the softening behavior in the stress 

state of dry side. 

                                                                 
32 Liingaard, M., Augustesen, A., Lade, P. V., "Characterization of models for time-dependent behavior of soils", 

International Journal of Geomechanics, 2004, 4.3: 157-177. 
33 Sekiguchi, H. and Ohta H., "Induced anisotropy and time dependency in clays", 9th ICSMFE, Tokyo, Constitutive 

equations of Soils, 1977, 229-238 
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Figure 4.5.6 Equivalent pressure 
shape and yield function 

5.4 
Sekiguchi-Ohta (Viscid) 
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Yield function 

The flow function of Viscid type is defined as follows: 

 

 0ln 1 exp 0vp
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  (4.5.25) 

 

 

 

 

 

The  f   of equation (4.5.25) is defined as follows: 
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    (4.5.26) 

 

The detailed explanation of equation (4.5.26) can be found in ‘2.16. Sekiguchi-Ohta (Inviscid)’. 

However, in case of directly using the flow function of equation (4.5.25) for yield function, the problem34 that 

elastic range cannot be defined occurs since the left term always has a positive value. In this case, the associated 

plastic flow rule cannot be used due to the violation of Hill's principle of maximum plastic work. In order to 

resolve this problem, Iizuka and Ohta35 transformed the equation (4.5.25) as follows: 

 

     , , 0vp

vf h f h t        (4.5.27) 

 

Here, the hardening function ( h ) is defined as follows: 
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, ln exp 1
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vp v
vh t

v t

 
 



    
    

     

   (4.5.28) 

 

However, there is a problem that the hardening function ( h ) is not defined when the initial visco-plastic 

volumetric strain rate is zero (
0 0vp

v  ). Therefore, the numerical problem is resolved by setting the initial value 

                                                                 
34 Takeyama, T., Pipatpongsa, T., Iizuka, A., Mizuta, T., Ohno, S., Ohta, H., "Soil/water coupled FE Simulation of field 

performance of 5 embankments placed on homogeneous clay." Proceedings of the Sri Lankan Geotechnical Society's First 

International Conference on Soil & Rock Engineering, 2007 
35 Iizuka, A., Ohta, H., "An interpretation of Sekiguchi and Ohta's model based on viscoplasticity theory.", Proceedings of 

the 34th Japanese National Conference on Geotechnical Engineering, 1999, 595-596 

  : Coefficient of secondary compression 

0  : Change speed of initial volumetric strain rate 
vp

v  : Visco-plastic volumetric strain 
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of the visco-plastic volumetric strain rate ( vp

v ) which makes  1, 0vp

vh t  at 
1t  when the stress state is 

judged to the visco-plastic state violating the initial yield function with load change or overtime. 

 

0 1
0 ln 1vp

v

v t
 



 
  

 
   (4.5.29) 

 

Figure (4.5.7) shows the yield function at triaxial stress state. Like the Cam-Clay material model, it is called that 

the right is wet side and the left is dry side based on the critical state line. Generally, the material model which 

follows critical state theory shows the hardening behavior at wet side and the softening behavior at dry side. 

However, in the viscid type of Sekiguchi-Ohta model, it is known that the over-consolidation ratio is high and 

the convergence problem36 occurs when the stress state locates dry side due to the nature of yield function. In 

FEA NX, the convergence problem is resolved by preventing the softening behavior at dry side. 

 

p

q
C.S.L

Dry side Wet side

yield function

 
  

                                                                 
36 Takeyama, T., Ohno, S., Pipatpongsa, T., Iizuka, A., Ohta, H., "The stress update using implicit integration for the viscid 

version of sekiguchi-ohta model", Technical report, 2005 

Figure 4.5.7 Simplified yield 
function and critical state line in 
triaxial stress state 
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Hysteresis Material Properties 

When the crack and yield occurs by irregular cyclic load, the displacement history to the current affects the later 

relationship between restoring force and displacement. The relationship between force and deformation for 

uniaxial load is called the Skeleton curve. When the cyclic load is applied based on the Skeleton curve, the rule 

of the relationship between force and deformation for unloading and reloading is called hysteresis model. The 

properties of each hysteresis model are explained in this chapter. Table 4.6.1 lists the available hysteresis models 

for each element. 

 

Hysteresis model 

Element type 

T
ru

ss
 

E
la

st
ic

 L
in

k 

B
e

a
m

 

In
te

rf
a

ce
 

G
e

o
gr

id
 

P
la

n
e

 S
tr

e
ss

 

S
h

e
ll 

P
la

n
e

 s
tr

a
in

 

A
xi

sy
m

m
e

tr
ic

 S
o

lid
 

S
o

lid
 

Multilinear ∨ ∨ ∨        

Normal Bilinear ∨ ∨ ∨        

Kinematic ∨ ∨ ∨        

Origin-Oriented ∨ ∨ ∨        

Peak-Oriented ∨ ∨ ∨        

Clough ∨ ∨ ∨        

Degrading ∨ ∨ ∨        

Takeda ∨ ∨ ∨        

Modified Takeda ∨ ∨ ∨        

Modified Ramberg 

Osgood 
∨ ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

Modified Hardin-

Drnevich 
∨ ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

  

Section 6 

Table 4.6.1 Available hysteresis 
models for each element type 



 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

250 | Chapter 1. 개요 

 

250 | Section 7. Thermal Material Properties  

 

 

 

Response points at initial loading move about on a bilinear skeleton curve. 

 

 
 

Hysteresis rule 

► In case of max 1D D , it is a linear elastic and moves on a elastic gradient straight line crossing the origin. 

► In case of the deformation D  first overpass 
1D , or the maximum deformation point to the current, it moves 

on a second gradient straight line. 

► In case of unloading in the condition of 
1D D  , 

1D D  , it moves on a second gradient straight line by 

unloading a elastic gradient according to the Masing rule. 
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6.1 
Normal Bilinear model 

Figure 4.6.1 Normal Bilinear 
model 
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Response points at initial loading move about on a trilinear skeleton curve. The unloading stiffness is identical 

to the elastic stiffness, and stiffness reduction after yielding is possible only for positive (+) and negative (-) 

symmetry. In case of kinematic model, the interaction of axial force and biaxial bending component can be 

considered by the plastic theory. 

 

 
 

Uniaxial hysteresis rule 

► In case of max 2D D , it behaves like a bilinear. 

► In case of max 2D D , it moves on a third gradient straight line. 

► In case of unloading, it moves on a elastic gradient according to the Masing rule. 

 

Multi-axial hysteresis rule 

It considers the interaction between axial force and biaxial bending component by the kinematic hardening rule 

based on the plastic theory. The yield domain is the following equation. 
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6.2 
Kinematic model 

Figure 4.6.2 Kinematic model 
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  (4.6.1) 

 

 

 

 

 

 

 

 

yM

zM

io
1io 

im

1im 
conjugate point

maxM  :  Maximum bending yield strength 

balP  :  Axial force at the balanced failure 

maxP  :  Axial yield strength 

 ,  ,   :  An exponent related to interaction curve 

Figure 4.6.3 Movement of yield 
surface and stiffness change 
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There are two yield surfaces corresponding to a trilinear skeleton curve and these two yield surfaces follow the 

hardening rule of modified Mroz. 

 

 

Response points at initial loading move about on a trilinear skeleton curve. The response point moves towards 

the origin at the time of unloading. When it reaches the skeleton curve on the opposite side, it moves along the 

skeleton curve again. 
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6.3 
Origin-Oriented model 

Figure 4.6.4 Origin-Oriented 
model 
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Response points at initial loading move about on a trilinear skeleton curve. The response point moves towards 

the maximum displacement point on the opposite side at the time of unloading. If the first yielding has not 

occurred on the opposite side, it moves towards the first yielding point on the skeleton curve. 
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6.4 
Peak-Oriented model 

Figure 4.6.5 Peak-Oriented model 
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Response points at initial loading move about on a bilinear skeleton curve. As the deformation progresses, the 

unloading stiffness gradually becomes reduced. When the loading sign changes at the time of unloading, the 

response point moves towards the maximum displacement point in the region of the progressing direction. If 

yielding has not occurred in the region, it moves towards the yielding point on the skeleton curve. Where 

unloading reverts to loading without the change of loading signs, the response point moves along the unloading 

path. And loading takes place on the skeleton curve as the loading increases. 

 

 
 

Hysteresis rule 

► In case of unloading in the condition of 1D D , it moves on the gradient of unloading stiffness, 
rK  . 
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   (4.6.2) 
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 min min,D P

6.5 
Clough model 

Figure 4.6.6 Clough model 

oK  :  Initial elastic stiffness 

1D  :  Yield displacement in the region of the first unloading 

maxD  :  Maximum displacement in the region of tension 
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► If the sign of the load changes in the unloading process, it moves toward the maximum deformation point of 

the opposite side. If the opposite side is not yield, 
1D  is the maximum deformation point. 

 

 

Response points at initial loading move about on a trilinear skeleton curve. At unloading, the coordinates of the 

load-deformation move to a path along which the maximum deformation on the opposite side can be reached 

due to the change of unloading stiffness once. If yielding has not occurred on the opposite side, the first yielding 

point is assumed to be the point of maximum deformation. As the maximum deformation increases, the 

unloading stiffness gradually decreases. 

 

 
 

Hysteresis rule 

► In case of unloading in the condition of 2D D , it behaves like a bilinear. 
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 max max,D P
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2D

1D

minD  :  Maximum displacement in the region of compression 

  :  Constant for determining unloading stiffness 

6.6 
Degrading model 

Figure 4.6.7 Degrading model 
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► In case of unloading in the condition of 
2D D , it moves on the gradient of unloading stiffness, 

rK  . 
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    (4.6.3) 

 

 

 

 

 

 

 

 

 

 

 

Response points at initial loading move about on a trilinear skeleton curve. The unloading stiffness is determined 

by the location of the unloading point on the skeleton curve and whether or not the first yielding has occurred 

in the opposite region. 
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D

2P

1P

1P

2P

oK  :  Initial elastic stiffness 

maxD  :  Maximum displacement in the region of tension 

minD  :  Maximum displacement in the region of compression 

maxP  :  Maximum force in the region of tension 

minP  :  Maximum force in the region of compresion 

2P  :  Yield stiffness in the region of the second unloading 

2D  :  Yield displacement in the region of the second unloading 

6.7 
Takeda model 

Figure 4.6.8 Takeda model 



 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

258 | Chapter 1. 개요 

 

258 | Section 7. Thermal Material Properties  

 

 

 

 

Hysteresis rule 

 

 
 

► In case of the deformation D  first overpass 1D , the opposite first yielding is the maximum displacement 

point on the opposite side. 

► In case of unloading on the skeleton curve, the coordinates of the load-deformation moves toward the 

maximum deformation point of the opposite side. (Rule 1) 

► In case of reloading before it reaches to the maximum deformation point of the opposite side, the point 

progresses along the same unloading curve. (Rule 2) 

► In case of reaching to the skeleton curve, it moves along the skeleton curve. (Rule 3) 
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Figure 4.6.9 Hysteresis rule of the 
Takeda model after the first 
yielding 
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► In case of the deformation D  first overpass 2D

, it moves along the skeleton curve. (Rule 5) 

► In case of unloading on this curve, it moves on the gradient of unloading stiffness, 
rK  . If the opposite side is 

before experiencing the first yielding, the range of rK 

 is the 1P
. (Rule 6) 
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    (4.6.4) 

 

► If the point exceeds the 1P
, it moves toward the second yielding point. (Rule 9) 
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Figure 4.6.10 Hysteresis rule of 
the Takeda model after the 
second yielding 
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► In case of unloading on the straight line toward the maximum deformation point of the opposite side, it enters 

to the inner loop. (Rule 11) 

► In case of the sign of restoring force changes in the process of unloading in the inner loop, it returns to the 

previous unloading point of the opposite side. (Rule 12) 
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Figure 4.6.11 Hysteresis rule of the 
inner loop Takeda model 
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Hysteresis rule 
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6.8 
Modified Takeda model 

Figure 4.6.12 Modified Takeda 
model 

Figure 4.6.13 Hysteresis rule of the 
modified Takeda model after the 
first yielding 
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► In case of the deformation D  first overpass 1D , the opposite first yielding is the maximum deformation 

point of the opposite side. 

► In case of unloading on the skeleton curve, the coordinates of the load-deformation moves toward the 

maximum deformation point of the opposite side. (Rule 1) 

► In case of reloading before it reaches to the maximum deformation point of the opposite side, the point 

progresses along the same unloading curve. (Rule 2) 

► In case of reaching to the skeleton curve, it moves along the skeleton curve. (Rule 3) 

 

 
 

► In case of the deformation D  first overpass 2D

, it moves along the skeleton curve. (Rule 4) 

► In case of unloading on this curve, it moves on the gradient of unloading stiffness, 
rK  . If the opposite side is 

before experiencing the second yielding, the opposite second yielding is the maximum deformation point of the 

opposite side. (Rule 5) 

 

P

D

2P

1P

 min min,D P

: 4Rule

: 5Rule

: 6Rule

: 7Rule

: 8Rule

: 9Rule

:10Rule

:11Rule

:12Rule

Figure 4.6.14 Hysteresis rule of 
the modified Takeda model after 
the second yielding 
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  (4.6.5) 

 

► At the time when the sign changes, , the coordinates of the load-deformation moves toward the maximum 

deformation point of the opposite side. (Rule 8) 

► In case of unloading on the straight line toward the maximum deformation point of the opposite side, it enters 

to the inner loop. (Rule 9) 

► At the time when the sign changes, the coordinates of the load-deformation moves toward the maximum 

deformation point of the opposite side. (Rule 10) 

 

 

The Ramberg-Osgood model is originally proposed for the dynamic model of metal material, but modified by 

Tatsuoka. 
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6.9 
Modified Ramberg-

Osgood model 

Figure 4.6.15 Modified Ramberg-
Osgood model 
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Hysteresis rule 

► In the initial loading, it moves along the following skeleton curve. 
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► The hysteresis curve is as follows: 
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   (4.6.7) 

 

If only shear stress is considered, the initial confinement pressure may be considered with the following equation. 
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                                     (4.6.8) 

 

 

 

 

 

Formulation is performed according to the additive decomposition, which divides elastic and plastic 

components, as shown in the following formula. 
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                                    (4.6.9) 

 

In a multi-axial state, the stresses are divided into hydrostatic stress and deviatoric stress, and then it is 

organized into deviatoric stress and deviatoric strain, and expressed in the following formula. 

 

oG  :  Initial stiffness (Shear modulus) 

r  :  Reference shear strain 

maxh  :  Maximum damping constant 

oiG , ri  :  Normalized value at confinement pressure 21.0tf/m  
'

mo  :  Initial confinement pressure 

1n , 2n  :  Influence coefficients of confinement pressure 
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Considering the multi-axial conditions of the plastic strain in equation (4.6.9), the equivalent deviatoric strain 

2 :eq dev dev  ε ε  and equivalent deviatoric stress 0.5 :eq dev dev  σ σ  are used to indicate the plastic strain. 
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                                    (4.6.11) 

 

Using equation (4.6.10) and equation (4.6.11), the relationship between stress and strain in a multi-axial state is 

defined as follows: 
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                                (4.6.12) 

 

The deviatoric strain and the deviatoric stress tensor of the left and right sides of equation (4.6.12) are replaced 

with the equivalent deviatoric strain and equivalent deviatoric stress, and the scalar equation is established as 

follows. 

 

o eq eq eq eqG                                     (4.6.13) 

 

Equation (4.6.12) and (4.6.13) are used to indicate the relationship between equivalent deviatoric stress and 

equivalent deviatoric strain. 
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σ ε                                (4.6.14) 

 

The differential equation for the relationship of the equivalent deviatoric strain and the equivalent deviatoric 

stress is as follows. 
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                               (4.6.15) 

devσ  :  Deviatoric stress tensor 

devε  :   Deviatoric strain tensor 

pl

devε  :   Plastic strain tensor 
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The following formula is used to define the relationship between stress and strain. 
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                               (4.6.16) 

 

Using equation (4.6.15) and (4.6.16), the material stiffness matrix is calculated as follows: 

 

1 2 1
2 3 2 2
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σ I δδ ε ε ε ε                       (4.6.17) 

 

 

 

This model defines the hysteresis curve by applying the Masing rule to the Hardin-Drnevich model which 

suggested only the skeleton curve. 

 

 





oG

oG

 1 1, 

Skeleton Curve

Hysteresis Curve

6.10 
Modified Hardin-Drnevich 

model 

Figure 4.6.16 Modified Hardin-
Drnevich model 
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Hysteresis rule 

► In the initial loading, it moves along the following skeleton curve. 
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    (4.6.18) 

 

 

 

 

► The hysteresis curve is as follows: 
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    (4.6.19) 

 

If only shear stress is considered, the initial confinement pressure may be considered with the following equation. 
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                                     (4.6.20) 

 

 

 

 

 

Formulation is performed according to the additive decomposition, which divides elastic and plastic 

components, as shown in the following formula. 
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                                    (4.6.21) 

 

Considering the multi-axial conditions of the plastic strain in equation (4.6.20), the equivalent deviatoric strain 

2 :eq dev dev  ε ε  and equivalent deviatoric stress 0.5 :eq dev dev  σ σ  are used to indicate the plastic strain. 

 

oG  :   Initial stiffness (Shear modulus) 

r  :   Reference shear strain 

oiG , ri  :  Normalized value at confinement pressure 21.0tf/m  
'

mo  :  Initial confinement pressure 

1n , 2n  :  Influence coefficients of confinement pressure 
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Subsequent relationships are the same as the Modified Ramberg-Osgood model described earlier, and the 

differential equation of equivalent deviatoric strain and equivalent deviatoric stress is as follows. 
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The material stiffness matrix is calculated as follows: 

 

1 2 1
2 3 2 2
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ANALYSIS REFERENCE Chapter 4. Materials 

Section 7. Thermal Material Properties | 269 

 

 

 

Thermal Material Properties 

The material used for the conduction element in FEA NX is isotropic. 

The heat flux-temperature gradient relationship of the isotropic thermally conductive material is as follows. 
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                                                           (4.7.1) 

 

In the case of a porous material such as a ground, it is composed not only of the soil particles but also water and 

gas in the pores between the soil particles. Therefore, unlike a general isotropic material, the thermal 

conductivity coefficient k considering water and gas is as follows. 

 

   1 1s w vk n k nSk n S k                                                        (4.7.2) 

 

 

 

 

 

 

The heat capacity ( C ) in the porous medium can also be expressed as follows. 

 

   1 1s s w w v vC n C nS C n S C                                               (4.7.3) 

 

 

 

 

 

 

Section 7 

7.1 
Constitutive equation 

7.2 
Porous material 

sk , wk , 
vk  :  Heat conductivity of soil, water and gas 

n  : Porosity 

S  :  Saturation 

s , w , v  :   Mass Density of soil, water and gas 

sC , wC , vC  :  Heat capacity of soil, water and gas 
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Below zero degrees, water changes phase to ice. In the case of the ground, the phase change of the groundwater 

in the air gap between the soil particles occurs, not the phase change of the soil particles themselves. At this 

time, additional energy must be supplied, which is called latent heat. Mentioned energy depend as well on the 

change of the unfrozen water content with respect to temperature. Unfrozen water content function depicts 

the rate at which water does not change into ice even at temperatures, generally below zero degrees.  

 

Therefore, considering the unfrozen water content function (
uf ) and the latent heat of water (

LH ), the 

thermal conductivity and thermal capacity of the ground can be expressed by the following equation. 

 

      1 1 1s u w u i vk n k nS f k f k n S k                                           (4.7.4) 
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7.3 
Freezing of Porous 

Material 

ik  :  Thermal Conductivity of Ice 


